typedef struct{
unsigned long a;
unsigned long b;
unsigned long c;
} mini_struct;
struct ministruct** build_2Dstruct(unsigned long x, unsigned long y){
double x_squared = pow(2, x);
struct ministruct** temp = (mini_struct**)malloc(x*sizeof(mini_struct*));
for(int i = 0; i < x_squared; i ){
temp[i] = (mini_struct*)malloc(y*sizeof(mini_struct));
for(int j = 0; j < y; j ){
temp[i][j].a = 0;
etc....
}
}
return temp;
}
In the code above I am trying to create a 2D array of ministructs**, with the whole struct being made out of 2^x ministructs*, and each ministruct* has y amount of ministructs.
aka: x = 2, y = 2,
[[struct, struct], [struct, struct], [struct, struct], [struct, struct]]
However, for some reason when I try to access the second element or index 1 of the struct inside each struct*, it says there is an error: "expression must be pointer to complete object".
I just do not understand why the code is not allowing me to access each individual element of the elements of the array?
Thanks
CodePudding user response:
You are trying to make an x by y array of structs. So:
// create array of x pointers
mini_struct **temp = malloc(x*sizeof(mini_struct*));
for (int i=0; i<x; i ) {
// to array of y structs
temp[i] = malloc(y*sizeof(mini_struct));
for (int j=0; j < y; j ) {
temp[i][j].a = 0;
... etc.
CodePudding user response:
Question is incomplete so I will be making asumptions.
You seem to be wanting to allocate a 2D array of structs and initialize all members to 0. Here is a possible solution:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
typedef struct mini_struct{
unsigned long a;
unsigned long b;
unsigned long c;
} mini_struct;
struct mini_struct** build_2Dstruct(unsigned long x, unsigned long y){
double x_squared = pow(x, 2);
mini_struct **temp = (mini_struct **) malloc(x_squared * sizeof(mini_struct*));
for(int i = 0; i < x_squared; i ){
temp[i] = (mini_struct *) calloc(y, sizeof(mini_struct));
}
return temp;
}
int main () {
int x = 3;
int y = 4;
mini_struct **struct2D = build_2Dstruct(x, y);
int x_squared = pow(x,2);
for (int i = 0; i < x_squared; i) {
for (int j = 0; j < y; j) {
printf("Value of data stored at struct[%d][%d] is: %d\n", i, j, struct2D[i][j]);
}
}
for (int i = 0; i < x_squared; i) {
free(struct2D[i]);
}
free(struct2D);
}
As you can see, this contains the whole program, not just the snippet you showed. In this case, a main function would have been useful so that we don't have to guess what you want to do. My solution creates the 2D array with all elements initialized to 0 (you can use calloc to do that, no need for a second for loop).
Another important point is that, because the function returns a newly heap allocated 2D array, you need to free it to avoid a memory leak (end of main function).
CodePudding user response:
You allocate x
pointers to mini_struct
:
mini_struct **temp = (mini_struct **) malloc(x_squared * sizeof(mini_struct*));
But then when you initialize them:
for(int i = 0; i < x_squared; i ){
temp[i] = (mini_struct *) calloc(y, sizeof(mini_struct));
}
You index temp
based on upto x_squared
.
Consider if x
is 2
. You would allocate temp to be an array of two pointers to mini_struct
. But then your for loop would attempt to initialize four elements in temp
.