I have a 2d array of numbers coming from a csv
this is just a example of the data shape
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
Im learning to use numpy, my goal is to convert that 2d array into a 3d array of shape (10,2,4) for example
index 0
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]]
index 1
[[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]]
index 2
[[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]]
index 3
[[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]]
index 4
[[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
I can do this by using a loop, but i wonder if there is a better way
also concatenating rows in one column would also work
my goal is to fit a keras model where a single sample is composed of multiple rows of a dataframe
CodePudding user response:
You can use slicing and list comprehension
>>> src = [[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13 ,14 ,15 ,16 ,17 ,18 ,19],
[20, 21, 22, 23 ,24 ,25 ,26 ,27 ,28 ,29],
[30, 31, 32, 33 ,34 ,35 ,36 ,37 ,38 ,39],
[40, 41, 42, 43 ,44 ,45 ,46 ,47 ,48 ,49],
[50, 51, 52, 53 ,54 ,55 ,56 ,57 ,58 ,59],
[60, 61, 62, 63 ,64 ,65 ,66 ,67 ,68 ,69],
[70, 71, 72, 73 ,74 ,75 ,76 ,77 ,78 ,79],
[80, 81, 82, 83 ,84 ,85 ,86 ,87 ,88 ,89],
[90, 91, 92, 93 ,94 ,95 ,96 ,97 ,98 ,99]]
>>> [src[i:i 2] for i in range(0,len(src),2)]
[[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39]],
[[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]],
[[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79]],
[[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]]]
Hope this answer your question
Edit : I re-read your question and look for the comment that @Anshumaan-mishra mention. You can also use numpy reshape.
>>> import numpy as np
>>> src = np.reshape(src,(5, 2, 10))
array([[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39]],
[[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]],
[[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79]],
[[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]]])
I answer with my code above because I'm focusing on the data structure that you want