I'm currently working on Principal Components Analysis and I would like to plot a correlation circle, 3 in my case because I've got 3 PCA.
The code is ok but I would like to show the result in a subplot (1 row, 3 columns) because now I have 3 consecutive figures.
When I try to initilaze the Matplotlib figure with fig, ax = plt.subplots(1,3)
it returns 3 "grid" of subplots of 1x3 with 1 circle inside each.
So instead of that I would like 1 "grid" with my 3 circle in 3 columns on the same row.
My code :
pcs = pca.components_
def display_circles(pcs, n_comp, pca, axis_ranks, labels=None, label_rotation=0, lims=None):
# Initialise the matplotlib figure
fig, ax = plt.subplots(1,3)
# For each factorial plane
for d1, d2 in axis_ranks:
if d2 < n_comp:
# Determine the limits of the chart
if lims is not None :
xmin, xmax, ymin, ymax = lims
elif pcs.shape[1] < 30 :
xmin, xmax, ymin, ymax = -1, 1, -1, 1
else :
xmin, xmax, ymin, ymax = min(pcs[d1,:]), max(pcs[d1,:]), min(pcs[d2,:]), max(pcs[d2,:])
# Add arrows
plt.quiver(np.zeros(pcs.shape[1]), np.zeros(pcs.shape[1]), pcs[d1,:], pcs[d2,:], angles='xy', scale_units='xy', scale=1, color="grey")
# Display variable names
if labels is not None:
for i,(x, y) in enumerate(pcs[[d1,d2]].T):
if x >= xmin and x <= xmax and y >= ymin and y <= ymax :
plt.text(x, y, labels[i], fontsize='10', ha='center', va='center', rotation=label_rotation, color="blue", alpha=0.5)
# Display circle
circle = plt.Circle((0,0), 1, facecolor='none', edgecolor='b')
plt.gca().add_artist(circle)
# Label the axes, with the percentage of variance explained
plt.xlabel('PC{} ({}%)'.format(d1 1, round(100*pca.explained_variance_ratio_[d1],1)))
plt.ylabel('PC{} ({}%)'.format(d2 1, round(100*pca.explained_variance_ratio_[d2],1)))
plt.title("Correlation Circle (PC{} and PC{})".format(d1 1, d2 1))
plt.show(block=False)
display_circles(pcs, num_components, pca, [(0,1), (1,2), (0,2)], labels = header)
Thanks for the help !!
CodePudding user response:
Sadly, you didn't provide data, so this answer is only going to explain what you can do to achieve your goal.
With fig, ax = plt.subplots(1,3)
you created 3 different axis that are stored inside ax
. So, ax[0]
refers to the first axis on the left, ax[1]
refers to the center axis, ax[2]
refers to the axis on the right. We use them to target the correct axis.
Since you have 3 PCA, we need an index to target the correct axis. So, change for d1, d2 in axis_ranks:
to for k, (d1, d2) in enumerate(axis_ranks):
. Now we can use the index k
to target the correct axis.
Next, you need to replace plt.
with ax[i].
. But we need to be careful though, as some methods are going to have a different name:
pcs = pca.components_
def display_circles(pcs, n_comp, pca, axis_ranks, labels=None, label_rotation=0, lims=None):
# Initialise the matplotlib figure
fig, ax = plt.subplots(1,3)
# For each factorial plane
for k, (d1, d2) in enumerate(axis_ranks):
if d2 < n_comp:
# Determine the limits of the chart
if lims is not None :
xmin, xmax, ymin, ymax = lims
elif pcs.shape[1] < 30 :
xmin, xmax, ymin, ymax = -1, 1, -1, 1
else :
xmin, xmax, ymin, ymax = min(pcs[d1,:]), max(pcs[d1,:]), min(pcs[d2,:]), max(pcs[d2,:])
# Add arrows
ax[k].quiver(np.zeros(pcs.shape[1]), np.zeros(pcs.shape[1]), pcs[d1,:], pcs[d2,:], angles='xy', scale_units='xy', scale=1, color="grey")
# Display variable names
if labels is not None:
for i,(x, y) in enumerate(pcs[[d1,d2]].T):
if x >= xmin and x <= xmax and y >= ymin and y <= ymax :
ax[k].text(x, y, labels[i], fontsize='10', ha='center', va='center', rotation=label_rotation, color="blue", alpha=0.5)
# Display circle
circle = plt.Circle((0,0), 1, facecolor='none', edgecolor='b')
ax[k].add_artist(circle)
# Label the axes, with the percentage of variance explained
ax[k].set_xlabel('PC{} ({}%)'.format(d1 1, round(100*pca.explained_variance_ratio_[d1],1)))
ax[k].set_ylabel('PC{} ({}%)'.format(d2 1, round(100*pca.explained_variance_ratio_[d2],1)))
ax[k].set_title("Correlation Circle (PC{} and PC{})".format(d1 1, d2 1))
display_circles(pcs, num_components, pca, [(0,1), (1,2), (0,2)], labels = header)