I have an array, R
. I would like to remove elements corresponding to indices in Remove
and then flatten with the remaining elements. The desired output is attached.
R=np.array([[1.05567452e 11, 1.51583103e 11, 5.66466172e 08],
[6.94076420e 09, 1.96129124e 10, 1.11642674e 09],
[1.88618492e 10, 1.73640817e 10, 4.84980874e 09]])
Remove = [(0, 1),(0,2)]
R1 = R.flatten()
print([R1])
The desired output is
array([1.05567452e 11, 6.94076420e 09, 1.96129124e 10, 1.11642674e 09,
1.88618492e 10, 1.73640817e 10, 4.84980874e 09])
CodePudding user response:
One option is to use numpy.ravel_multi_index
to get the index of Remove
in the flattened array, then delete them using numpy.delete
:
out = np.delete(R, np.ravel_multi_index(tuple(zip(*Remove)), R.shape))
Another could be to replace the values in Remove
, then flatten R
and filter these elements out:
R[tuple(zip(*Remove))] = R.max() 1
arr = R.ravel()
out = arr[arr<R.max()]
Output:
array([1.05567452e 11, 6.94076420e 09, 1.96129124e 10, 1.11642674e 09,
1.88618492e 10, 1.73640817e 10, 4.84980874e 09])
CodePudding user response:
You can do this with list comprehension:
import numpy as np
R=np.array([[1.05567452e 11, 1.51583103e 11, 5.66466172e 08],
[6.94076420e 09, 1.96129124e 10, 1.11642674e 09],
[1.88618492e 10, 1.73640817e 10, 4.84980874e 09]])
Remove = [(0, 1),(0,2)]
b = [[j for i, j in enumerate(m) if (k, i) not in Remove] for k, m in enumerate(R)]
R1 = np.array([i for j in b for i in j]) #Flatten the resulting list
print(R1)
Output
array([1.05567452e 11, 6.94076420e 09, 1.96129124e 10, 1.11642674e 09,
1.88618492e 10, 1.73640817e 10, 4.84980874e 09])
CodePudding user response:
R = np.array([[1.05567452e 11, 1.51583103e 11, 5.66466172e 08],
[6.94076420e 09, 1.96129124e 10, 1.11642674e 09],
[1.88618492e 10, 1.73640817e 10, 4.84980874e 09]])
R1 = np.delete(R, (1, 2))
print([R1])
CodePudding user response:
import numpy as np
R = np.array([[1.05567452e 11, 1.51583103e 11, 5.66466172e 08],
[6.94076420e 09, 1.96129124e 10, 1.11642674e 09],
[1.88618492e 10, 1.73640817e 10, 4.84980874e 09]])
Remove = [(0, 1), (0, 2)]
Remove = [R.shape[1]*i j for (i, j) in Remove]
print(np.delete(R, Remove))