Consider this nested list of dataframes:
df <- data.frame(x = 1:5, y = letters[1:5])
l <- list(df, list(df, df), list(df, list(df, df, list(df))), list(df), df)
How can one get from this deeply nested list to a simple list of dataframes:
list(df, df, df, df, df, df, df, df, df)
Usual solutions (like here) fails to keep dataframes' structure.
CodePudding user response:
A convenient option is to use rrapply
:
rrapply(l, classes = "data.frame", how = "flatten")
Check whether it's the same as the desired output:
identical(list(df, df, df, df, df, df, df, df, df),
rrapply(l, classes = "data.frame", how = "flatten"))
[1] TRUE
CodePudding user response:
Or using a base R recursive function:
unnestdf <- function(x)
{
if (is.data.frame(x))
return(list(x))
if (!is.list(x))
return(NULL)
unlist(lapply(x, unnestdf), F)
}
unnestdf(l)
#> [[1]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[2]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[3]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[4]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[5]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[6]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[7]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[8]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e
#>
#> [[9]]
#> x y
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e