I need to write a generic function that finds sum of elements that belong to two containers and put those elements inside a vector which type is the result of sum.
EXAMPLE:
container one: 5 2 8 3 6
container two: 6 1 5
container of sum: 11 3 13 3 6
#include <iostream>
#include <cmath>
#include <vector>
template < typename tip1, typename tip2, typename tip >
tip sum_of_containers(tip1 blok1, tip2 blok2) {
std::vector < tip > a;
int n1 = std::distance(blok1.begin(), blok1.end());
int n2 = std::distance(blok2.begin(), blok2.end());
int n;
n = n1;
if (n2 > n1) n = n2;
for (int i = 0; i < n; i )
a[i].push_back(blok1[i] blok2[i]);
return a;
}
int main() {
int n1, n2, x;
std::cin >> n1;
std::vector < double > a, b, c;
for (int i = 0; i < n1; i ) {
std::cin >> x;
a.push_back(x);
}
std::cin >> n2;
for (int i = 0; i < n2; i ) {
std::cin >> x;
b.push_back(x);
}
c = sum_of_containers(a, b);
for (double i: c)
std::cout << i << " ";
return 0;
}
errors on line 31:
no matching function for call to 'sum_of_containers
couldn't deduce template parameter 'tip'
Could you give me some approach or idea how to solve this problem?
CodePudding user response:
The question is very unclear.
"Generic" could mean different containers, like std::vector
or std::deque
. But in your function function you are using a std::vector
and the index operator[]
and the function push_back
. The only 2 containers having all this are std::vector
and std::deque
. So, this would not make that much sense.
The next level of "generic" would be to have different data types for a std::vector
. But with 3 template parameters, this would mean worst case that we add 2 different data types and assign them to a 3rd, again different data type.
Logically this would create a lot of other troubles, type casting would be needed and loss of precision could be the result.
If we look in the function main, then we see, that 3 std::vectors
, all with the same data type double
are instantiated. This makes sense. And this would restrict the "generic" function to have one common templatized parameter for a type that a std::vector
would hold.
This could then look like the following:
#include <iostream>
#include <vector>
#include <algorithm>
template <typename T>
std::vector<T> sumOfVectors(const std::vector<T>& t1, const std::vector<T>& t2) {
// Get a reference to the larger vector
const std::vector<T>& largerVector = (t1.size() > t2.size()) ? t1 : t2;
// Create the resulting vector that can hold all elements
std::vector<T> result(largerVector.size(), {});
size_t index{};
for (; index < std::min(t1.size(),t2.size()); index)
result[index] = t1[index] t2[index];
for (; index < largerVector.size(); index)
result[index] = largerVector[index];
return result;
}
int main() {
int n1, n2, x;
std::cin >> n1;
std::vector < double > a, b, c;
for (int i = 0; i < n1; i ) {
std::cin >> x;
a.push_back(x);
}
std::cin >> n2;
for (int i = 0; i < n2; i ) {
std::cin >> x;
b.push_back(x);
}
c = sumOfVectors(a, b);
for (double i : c)
std::cout << i << " ";
return 0;
}
But of course you would define an operator
for this, which gives us a more intuitive result:
#include <iostream>
#include <vector>
#include <algorithm>
template <typename T>
std::vector<T> operator (const std::vector<T>& t1, const std::vector<T>& t2) {
// Get a reference to the larger vector
const std::vector<T>& largerVector = (t1.size() > t2.size()) ? t1 : t2;
// Create the resulting vector that can hold all elements
std::vector<T> result(largerVector.size(), {});
size_t index{};
for (; index < std::min(t1.size(),t2.size()); index)
result[index] = t1[index] t2[index];
for (; index < largerVector.size(); index)
result[index] = largerVector[index];
return result;
}
int main() {
int n1, n2, x;
std::cin >> n1;
std::vector < double > a, b, c;
for (int i = 0; i < n1; i ) {
std::cin >> x;
a.push_back(x);
}
std::cin >> n2;
for (int i = 0; i < n2; i ) {
std::cin >> x;
b.push_back(x);
}
c = a b;
for (double i : c)
std::cout << i << " ";
return 0;
}
Edit
With the exact task description given in the comment, we can come up with the needed solution.
It is a little bit more heavy.
We could even add type traits to check, if the containers are iterable, but maybe that is too much (though easy in C 20 with something like if constexpr (std::ranges::range<Container>)
Anyway, please see the updated solution with 2 test cases.
#include <iostream>
#include <type_traits>
#include <vector>
#include <deque>
#include <forward_list>
#include <array>
#include <list>
#include <string>
// Some aliases to avoid heavy typing
template <typename T, typename U>
using Value_t = typename std::common_type<typename T::value_type, typename U::value_type>::type;
template <typename T, typename U>
using Vector_t = typename std::vector<Value_t<T, U>>;
template <typename T, typename U>
auto sum_of_containers(const T& c1, const U& c2) -> Vector_t<T, U> {
// Get rid of template parameters using aliases
using MyType = Value_t<T,U>;
using MyVector = Vector_t<T, U>;
// Here we will store the result
MyVector result{};
typename T::const_iterator c1Iter = std::begin(c1);
typename U::const_iterator c2Iter = std::begin(c2);
// Add, as long as there are the same number of elements in the containers
while ((c1Iter != std::end(c1)) and (c2Iter != std::end(c2)))
result.push_back(static_cast<MyType>(*c1Iter ) static_cast<MyType>(*c2Iter ));
// If there should still be elements in one of the containers, then add them to the resulting vector as is
while (c1Iter != std::end(c1))
result.push_back(static_cast<MyType>(*c1Iter ));
while (c2Iter != std::end(c2))
result.push_back(static_cast<MyType>(*c2Iter ));
return result;
}
int main() {
// Test Data 0
std::deque<float> fl1 { 0.1f, 0.2f, 0.3f };
std::deque<double> dbl1 { 0.1, 0.2, 0.3, 0.4, 0.5 };
auto result0 = sum_of_containers(fl1, dbl1);
for (const auto& x0 : result0)
std::cout << x0 << '\n';
std::cout << '\n';
// Test Data 1
std::deque<int> dq{ -1,2,-3 };
std::forward_list<float> fl{ 0.1f, 0.2f, 0.3f, 0.4f, 0.5f };
auto result1 = sum_of_containers(dq, fl);
for (const auto& x1 : result1)
std::cout << x1 << '\n';
std::cout << '\n';
// Test Data 2
std::array<unsigned long, 3> ar1{ 1ul,2ul,3ul };
std::list<double> dbl{ 0.1, 0.2, 0.3, 0.4, 0.5 };
auto result2 = sum_of_containers(ar1, dbl);
for (const auto& x2 : result2)
std::cout << x2 << '\n';
std::cout << '\n';
}
.
.
.
And of course, but not needed, you would implement also the operator here.
#include <iostream>
#include <type_traits>
#include <vector>
#include <deque>
#include <forward_list>
#include <array>
#include <list>
#include <string>
// Some aliases to avoid heavy typing
template <typename T, typename U>
using Value_t = typename std::common_type<typename T::value_type, typename U::value_type>::type;
template <typename T, typename U>
using Vector_t = typename std::vector<Value_t<T, U>>;
template <typename T, typename U>
auto operator (const T& c1, const U& c2) -> Vector_t<T, U> {
// Get rid of template parameters using aliases
using MyType = Value_t<T, U>;
using MyVector = Vector_t<T, U>;
// Here we will store the result
MyVector result{};
typename T::const_iterator c1Iter = std::begin(c1);
typename U::const_iterator c2Iter = std::begin(c2);
// Add, as long as there are the same number of elements in the containers
while ((c1Iter != std::end(c1)) and (c2Iter != std::end(c2)))
result.push_back(static_cast<MyType>(*c1Iter ) static_cast<MyType>(*c2Iter ));
// If there should still be elements in one of the containers, then add them to the resulting vector as is
while (c1Iter != std::end(c1))
result.push_back(static_cast<MyType>(*c1Iter ));
while (c2Iter != std::end(c2))
result.push_back(static_cast<MyType>(*c2Iter ));
return result;
}
int main() {
// Test Data 0
std::deque<float> fl1{ 0.1f, 0.2f, 0.3f };
std::deque<double> dbl1{ 0.1, 0.2, 0.3, 0.4, 0.5 };
auto result0 = fl1 dbl1;
for (const auto& x0 : result0)
std::cout << x0 << '\n';
std::cout << '\n';
// Test Data 1
std::vector<int> ve{ -1,2,-3 };
std::forward_list<float> fl{ 0.1f, 0.2f, 0.3f, 0.4f, 0.5f };
auto result1 = ve fl;
for (const auto& x1 : result1)
std::cout << x1 << '\n';
std::cout << '\n';
// Test Data 2
std::array<unsigned long, 3> ar1{ 1ul,2ul,3ul };
std::list<double> dbl2{ 0.1, 0.2, 0.3, 0.4, 0.5 };
auto result2 = ar1 dbl2;
for (const auto& x2 : result2)
std::cout << x2 << '\n';
std::cout << '\n';
}