I've made a loop that gives me data in the following format:
name_quant = [{'name_id': 'S00004', 'quantity': '1'}, {'name_id': 'S00004', 'quantity': '2'}, {'name_id': 'S00003', 'quantity': '1'},
{'name_id': 'S00003', 'quantity': '2'}, {'name_id': 'S00003', 'quantity': '2'}, {'name_id': 'S00002', 'quantity': '1'}]
I used the following loop to get the values above:
namesequence = EventSequence.objects.filter(description="names").values("Details")
name_quant = [{ 'name_id': e['element'][33:39],
'quantity': e['element'][50:51] } for e in namesequence ]
So my question is how can I aggregate the name_ids and sum the quantities of matching name_ids so that i get a result like so:
name_sum = [{'name_id': 'S00001', 'quantity': '160'}, {'name_id': 'S00002', 'quantity': '50'}, {'name_id': 'S00003', 'quantity': '40'}, {'name_id': 'S00004', 'quantity': '90'}]
I would have used the sum function in Django but I have to subscript and loop though the value first which makes it a bit more complicated :/
Any help is appreciated!
CodePudding user response:
If I understand the question correctly, it looks like the requirement is to consolidate keys (name_id) by quantity. I can't see how the required output values are derived from the sample input data but that may be because it's incomplete.
name_quant = [{'name_id': 'S00004', 'quantity': '1'}, {'name_id': 'S00004', 'quantity': '2'}, {'name_id': 'S00003', 'quantity': '1'},
{'name_id': 'S00003', 'quantity': '2'}, {'name_id': 'S00003', 'quantity': '2'}, {'name_id': 'S00002', 'quantity': '1'}]
td = dict()
for e in name_quant:
nid = e['name_id']
td[nid] = td.get(nid, 0) int(e['quantity'])
new_list = [{'name_id': k, 'quantity': str(v)} for k, v in td.items()]
print(new_list)
Output:
[{'name_id': 'S00004', 'quantity': '3'}, {'name_id': 'S00003', 'quantity': '5'}, {'name_id': 'S00002', 'quantity': '1'}]
CodePudding user response:
If the list of name_quant is large, I prefer to use pandas to do the groupby staff:
import pandas as pd
name_quant = [{'name_id': 'S00004', 'quantity': '1'}, {'name_id': 'S00004', 'quantity': '2'},
{'name_id': 'S00003', 'quantity': '1'},
{'name_id': 'S00003', 'quantity': '2'}, {'name_id': 'S00003', 'quantity': '2'},
{'name_id': 'S00002', 'quantity': '1'}]
df = pd.DataFrame.from_records(name_quant)
df['quantity'] = df['quantity'].astype(int)
results = df.groupby(['name_id']).agg({'quantity': 'sum'}).to_records() # [('S00002', 1) ('S00003', 5) ('S00004', 3)]
grouped_name_quant = [{'name_id': x[0], 'quantity': x[1]} for x in results]
print(grouped_name_quant)
The output is :
[{'name_id': 'S00002', 'quantity': 1}, {'name_id': 'S00003', 'quantity': 5}, {'name_id': 'S00004', 'quantity': 3}]