I am new to python and working on a dataframe whose first column is 'Country' followed by 144 columns of numeric data.
Goal and Expected Result:
Need to create new columns which is an average of 3 columns. ex: first new column is an average of first 3 columns of numerical data (columns numbers 1,2 & 3). The next new column is an average of subsequent 3 columns (columns numbers 4,5 & 6) and so on. Since this dataset is having 144 columns we need to create 48 new columns (144/3). Please find the snapshot of the dataframe below
I am using the following code which is definitely not an ideal way of doing it and there should be a better of doing it.
Can someone suggest if the output can be achieved using a loop function?
df = pd.read_excel('/content/df_Data.xlsx')
df[2010_1] = df[[1,2,3]].mean(axis=1)
df[2010_2] = df[[4,5,6]].mean(axis=1)
df[2010_3] = df[[7,8,9]].mean(axis=1)
df[2010_4] = df[[10,11,12]].mean(axis=1)
df[2011_1] = df[[13,14,15]].mean(axis=1)
df[2011_2] = df[[16,17,18]].mean(axis=1)
df[2011_3] = df[[19,20,21]].mean(axis=1)
df[2011_4] = df[[22,23,24]].mean(axis=1)
df[2012_1] = df[[25,26,27]].mean(axis=1)
df[2012_2] = df[[28,29,30]].mean(axis=1)
df[2012_3] = df[[31,32,33]].mean(axis=1)
df[2012_4] = df[[34,35,36]].mean(axis=1)
df[2013_1] = df[[37,38,39]].mean(axis=1)
df[2013_2] = df[[40,41,42]].mean(axis=1)
df[2013_3] = df[[43,44,45]].mean(axis=1)
df[2013_4] = df[[46,47,48]].mean(axis=1)
df[2014_1] = df[[49,50,51]].mean(axis=1)
df[2014_2] = df[[52,53,54]].mean(axis=1)
df[2014_3] = df[[55,56,57]].mean(axis=1)
df[2014_4] = df[[58,59,60]].mean(axis=1)
df[2015_1] = df[[61,62,63]].mean(axis=1)
df[2015_2] = df[[64,65,66]].mean(axis=1)
df[2015_3] = df[[67,68,69]].mean(axis=1)
df[2015_4] = df[[70,71,72]].mean(axis=1)
df[2016_1] = df[[73,74,75]].mean(axis=1)
df[2016_2] = df[[76,77,78]].mean(axis=1)
df[2016_3] = df[[79,80,81]].mean(axis=1)
df[2016_4] = df[[82,83,84]].mean(axis=1)
df[2017_1] = df[[85,86,87]].mean(axis=1)
df[2017_2] = df[[88,89,90]].mean(axis=1)
df[2017_3] = df[[91,92,93]].mean(axis=1)
df[2017_4] = df[[94,95,96]].mean(axis=1)
df[2018_1] = df[[97,98,99]].mean(axis=1)
df[2018_2] = df[[100,101,102]].mean(axis=1)
df[2018_3] = df[[103,104,105]].mean(axis=1)
df[2018_4] = df[[106,107,108]].mean(axis=1)
df[2019_1] = df[[109,110,111]].mean(axis=1)
df[2019_2] = df[[112,113,114]].mean(axis=1)
df[2019_3] = df[[115,116,117]].mean(axis=1)
df[2019_4] = df[[118,119,120]].mean(axis=1)
df[2020_1] = df[[121,122,123]].mean(axis=1)
df[2020_2] = df[[124,125,126]].mean(axis=1)
df[2020_3] = df[[127,128,129]].mean(axis=1)
df[2020_4] = df[[130,131,132]].mean(axis=1)
df[2021_1] = df[[133,134,135]].mean(axis=1)
df[2021_2] = df[[136,137,138]].mean(axis=1)
df[2021_3] = df[[139,140,141]].mean(axis=1)
df[2021_4] = df[[142,143,144]].mean(axis=1)
CodePudding user response:
No loop solution
out = df.groupby(np.arange(df.shape[1]) // 3, axis=1).mean()
out.columns = pd.period_range('2010', freq='Q', periods=out.shape[1])
Explained
Create a grouper for the columns axis which partitions the columns in a 48 consecutive sets. This can be achieved using the below code:
>>> np.arange(df.shape[1]) // 3
array([ 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,
5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11,
11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16,
17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22,
22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28,
28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33,
34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39,
39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45,
45, 45, 46, 46, 46, 47, 47, 47], dtype=int32)
Now group the dataframe along the columns axis using the above partitions and calculate mean
, then generate a period range starting from 2010
having a quarterly frequency and assign this period range to the columns of the target dataframe. The period range can be generated using the below code:
>>> pd.period_range('2010', freq='Q', periods=out.shape[1])
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4', '2011Q1', '2011Q2',
'2011Q3', '2011Q4', '2012Q1', '2012Q2', '2012Q3', '2012Q4',
'2013Q1', '2013Q2', '2013Q3', '2013Q4', '2014Q1', '2014Q2',
'2014Q3', '2014Q4', '2015Q1', '2015Q2', '2015Q3', '2015Q4',
'2016Q1', '2016Q2', '2016Q3', '2016Q4', '2017Q1', '2017Q2',
'2017Q3', '2017Q4', '2018Q1', '2018Q2', '2018Q3', '2018Q4',
'2019Q1', '2019Q2', '2019Q3', '2019Q4', '2020Q1', '2020Q2',
'2020Q3', '2020Q4', '2021Q1', '2021Q2', '2021Q3', '2021Q4'],
dtype='period[Q-DEC]')
CodePudding user response:
Much more verbose than the other answer but hopefully still helpful. The idea is to (1) melt the "wide table" to a "long table", (2) add a year_quarter column, and (3) group on that column.
import pandas as pd
import numpy as np
num_cols = 14
num_rows = 5
np.random.seed(1)
#Create a table in the same shape that you describe
#columns are ints which I'm guessing represent months
df = pd.DataFrame({
c 1:np.random.randint(1,20,num_rows) for c in range(num_cols)
})
#Melt the table to "long form" where each row has the previous column name and value
long_df = df.melt(var_name='month',value_name='val')
#Add quarter_year column
years = long_df['month'].floordiv(13) 2020
quarters = long_df['month'].sub(1).mod(4).add(1) #better way to do this?
long_df['year_quarter'] = years.astype(str) '_' quarters.astype(str)
#Use groupby to get the mean value per year_quarter (you can reshape the table later if you need)
long_df.groupby('year_quarter')['val'].mean().reset_index(name='mean_quarter_values')