I have two dataframes like as shown below
test_id,status,revenue,cnt_days,age
1,passed,234.54,3,21
2,passed,543.21,5,29
11,failed,21.3,4,35
15,failed,2098.21,6,57
51,passed,232,21,80
75,failed,123.87,32,43
df1 = pd.read_clipboard(sep=',')
test_id,var_name,score,sign
1,revenue,10,pos
1,cnt_days,5,neg
1,age,15,pos
2,revenue,11,pos
2,cnt_days,3,neg
2,age,25,pos
df2 = pd.read_clipboard(sep=',')
I would like to do the below
a) Bring the value of variables revenue
, cnt_days
, age
from df1 and store it in df2 under a new column var_value
. We copy only these 3 variables because they are present under df2[var_name]
For ex: We have df1 column names stored as values in df2 under var_name
.
Now, I would like to bring their values and store it under var_value
for each matching test_id
and corresponding column name
.
I was trying something like below
out_df = df1.merge(df2,on='test_ids').melt(var_name='var_name')
out_df.drop_duplicates()
But this results in incorrect output.
I expect my output to be like as below
CodePudding user response:
Because in ouput is not column status
fors rmove it by drop
, then use DataFrame.melt
and add to df2
by left join in DataFrame.merge
:
out_df = df2.merge(df1.drop('status',1)
.melt('test_id', var_name='var_name', value_name='var_value'),
how='left')
print (out_df)
test_id var_name score sign var_value
0 1 revenue 10 pos 234.54
1 1 cnt_days 5 neg 3.00
2 1 age 15 pos 21.00
3 2 revenue 11 pos 543.21
4 2 cnt_days 3 neg 5.00
5 2 age 25 pos 29.00
If order of columns is important:
out_df.insert(2, 'var_value', out_df.pop('var_value'))
print (out_df)
test_id var_name var_value score sign
0 1 revenue 234.54 10 pos
1 1 cnt_days 3.00 5 neg
2 1 age 21.00 15 pos
3 2 revenue 543.21 11 pos
4 2 cnt_days 5.00 3 neg
5 2 age 29.00 25 pos
CodePudding user response:
IIUC, use melt
and a left merge
:
df2.merge(df1.melt(id_vars=['test_id', 'status'],
var_name='var_name', value_name='var_value'),
on=['test_id', 'var_name'], how='left'
)
output:
test_id var_name score sign status var_value
0 1 revenue 10 pos passed 234.54
1 1 cnt_days 5 neg passed 3.00
2 1 age 15 pos passed 21.00
3 2 revenue 11 pos passed 543.21
4 2 cnt_days 3 neg passed 5.00
5 2 age 25 pos passed 29.00