In a follow-up of my previous question I am trying add another column to the following sliced dataframe:
>>> df = pd.DataFrame(np.array([[1, 1, 1, 1, 2, 2, 2], [0, 0, 0, 1, 0, 0, 1], ['some text', 'other text', 'more text', 'new text', 'text sample', 'sample', 'sample text'], ['kw1, kw2', 'kw1, kw2, kw3', 'kw1', 'kw1, kw2, kw3, kw4', 'kw1', 'kw1, kw2, kw3', 'kw1, kw2']), columns=['value', 'cluster', 'text', 'keywords'])
>>> result = df.groupby(['value', 'cluster', 'text']).keywords.sum().to_frame()
>>> result =
value cluster text keywords
1 0 some text kw1, kw2
other text kw1, kw2, kw3
more text kw1
1 new text kw1, kw2, kw3, kw4
2 0 text sample kw1
sample kw1, kw2, kw3
1 sample text kw1, kw2
Based on the last question, the content of the column I want to add should be based on a dictionary like this:
>>> summary2 = {0: ['some, summary', 'this, too, summ'], 1: ['kws, of, summ', 'summ, based, kw']}
My plan is to match the keys of the dictionary with the column "value" and the items within the dictionary lists with the cluster, so I receive this output:
value cluster summary text keywords
1 0 some, summary some text kw1, kw2
other text kw1, kw2, kw3
more text kw1
1 this, too, summ new text kw1, kw2, kw3, kw4
2 0 kws, of, summ text sample kw1
sample kw1, kw2, kw3
1 summ, based, kw sample text kw1, kw2
What I've tried so far is the following:
result['summary2'] = result.groupby(['value','cluster']).ngroup().map({item: k for k, v in summary2.items() for item in v})
The column however outputs only NaNs.
CodePudding user response:
If you want to fill the "summary" column by position (i.e. no mapping of value/cluster to the keys), you could try:
#flatten all your dictionary values to a list
lst = [item for sublist in summary2.values() for item in sublist]
#map to ngroup
result['summary'] = result.groupby(["value", "cluster"]).ngroup().map({i: s for i, s in enumerate(lst)})
#assign summary to index and reorder levels if needed
result = result.set_index("summary", append=True).reorder_levels(["value", "cluster", "summary", "text"])
>>> result
keywords
value cluster summary text
1 0 some, summary more text kw1
other text kw1, kw2, kw3
some text kw1, kw2
1 this, too, summ new text kw1, kw2, kw3, kw4
2 0 kws, of, summ sample kw1, kw2, kw3
text sample kw1
1 summ, based, kw sample text kw1, kw2
CodePudding user response:
IIUC, you can try apply
on rows
result = df.groupby(['value', 'cluster', 'text']).keywords.sum().to_frame()
summary2 = {0: ['some, summary', 'this, too, summ'], 1: ['kws, of, summ', 'summ, based, kw']}
result = (result.assign(summary=result.apply(lambda row: summary2[row.name[0]-1][row.name[1]], axis=1))
.set_index('summary', append=True)
.reorder_levels(["value", "cluster", "summary", "text"]))
print(result)
keywords
value cluster summary text
1 0 some, summary more text kw1
other text kw1, kw2, kw3
some text kw1, kw2
1 this, too, summ new text kw1, kw2, kw3, kw4
2 0 kws, of, summ sample kw1, kw2, kw3
text sample kw1
1 summ, based, kw sample text kw1, kw2