I have an excel dataset which contains 100 rows and 100 clolumns with order frequencies in locations described by x and y.(gird like structure)
I'd like to convert it to the following structure with 3 columns:
x-Coördinaten | y-Coördinaten | value
The "value" column only contains positive integers. The x and y column contain float type data (geograohical coordinates. The order does not matter, as it can easily be sorted afterwards.
So,basicly a merge of lists could work, e.g.:
[[1,5,3,5], [4,2,5,6], [2,3,1,5]] ==> [1,5,3,5,4,2,5,6,2,3,1,5]
But then i would lose the location...which is key for my project.
What is the best way to accomplish this?
CodePudding user response:
Assuming this input:
l = [[1,5,3,5],[4,2,5,6],[2,3,1,5]]
df = pd.DataFrame(l)
you can use stack
:
df2 = df.rename_axis(index='x', columns='y').stack().reset_index(name='value')
output:
x y value
0 0 0 1
1 0 1 5
2 0 2 3
3 0 3 5
4 1 0 4
5 1 1 2
6 1 2 5
7 1 3 6
8 2 0 2
9 2 1 3
10 2 2 1
11 2 3 5
or melt
for a different order:
df2 = df.rename_axis('x').reset_index().melt('x', var_name='y', value_name='value')
output:
x y value
0 0 0 1
1 1 0 4
2 2 0 2
3 0 1 5
4 1 1 2
5 2 1 3
6 0 2 3
7 1 2 5
8 2 2 1
9 0 3 5
10 1 3 6
11 2 3 5
CodePudding user response:
You should be able to get the results with a melt
operation -
df = pd.DataFrame(np.arange(9).reshape(3, 3))
df.columns = [2, 3, 4]
df.loc[:, 'x'] = [3, 4, 5]
This is what df
looks like
2 3 4 x
0 0 1 2 3
1 3 4 5 4
2 6 7 8 5
The melt operation -
df.melt(id_vars='x', var_name='y')
output -
x y value
0 3 2 0
1 4 2 3
2 5 2 6
3 3 3 1
4 4 3 4
5 5 3 7
6 3 4 2
7 4 4 5
8 5 4 8