Home > database >  In r, how to count the number of unique occurrences within a year with repeated values?
In r, how to count the number of unique occurrences within a year with repeated values?

Time:06-03

For each year in my data frame, I would like to calculate the percentage of birds with (face.data=="yes") out of the total number of birds observed during that year. One problem is that I have multiple observations of the same bird within the same year.

This is my dataset:

df <- data.frame(
  bird.ID = c(001, 001, 001, 002, 002, 002, 006 ,006, 007, 007, 007, 007), 
  date = c(2010-04-09, 2013-04-14, 2013-09-14, 2013-05-08, 2013-06-08, 2013-08-08, 2013-04-08, 2013-06-08, 2014-06-08, 2016-06-08, 2017-06-08, 2017-08-08), 
  face.data = c("yes", "yes", "no","yes", "yes", "no","yes", "yes", "no","yes", "yes", "no")
)

To get the number of "yes" per year, I tried:

aggregate(face.data=="yes" ~ cut(date, "1 year"), data = df, sum)

But that counts every line with "yes" even if that of the same bird.

Ideally, the end result will be a data freame with three columns: (i) the year (e.g.2013); (ii) the total number of Bird.ID observed that year, (iii) the number of unique bird.ID with face.data=="yes" observed during this year.

Something like this:

            year  number of bird.ID         number of face.data 
 1           2013    10                             3      
 2           2014    15                             6      
 3           2015    20                             9      

CodePudding user response:

A dyplrsolution:

df %>% 
  mutate(date = ymd(date),
         Year= year(date)) %>%
  group_by(Year) %>% 
  summarise(total_birds = length(unique(bird.ID)),
            yes_birds = length(unique(bird.ID[face.data=='yes'])))

Output:

# A tibble: 5 x 3
   Year total_birds yes_birds
  <dbl>       <int>     <int>
1  2010           1         1
2  2013           3         3
3  2014           1         0
4  2016           1         1
5  2017           1         1

Or with n_distinct():

df %>% 
  mutate(date = ymd(date),
         Year= year(date)) %>%
  group_by(Year) %>% 
  summarise(total_birds = n_distinct(bird.ID),
            yes_birds = n_distinct(bird.ID[face.data=='yes']))

CodePudding user response:

In a by approach count the respective lengths.

First, some fresh sample data.

#    bird.ID       date face.data
# 1        4 2008-01-24        no
# 2        5 2008-05-25        no
# 3        4 2008-07-15        no
# 4        2 2008-08-13       yes
# 5        1 2008-09-15        no
# 6        2 2008-10-25       yes
# 7        1 2008-11-09       yes
# 8        2 2009-02-09        no
# 9        2 2009-04-25       yes
# 10       2 2009-05-18       yes
# 11       5 2009-09-12        no
# 12       4 2009-09-17        no
# 13       1 2009-12-27       yes
# 14       4 2010-04-15        no
# 15       1 2010-05-09        no
# 16       3 2010-07-10       yes
# 17       1 2010-08-02        no
# 18       1 2010-09-08        no
# 19       3 2010-09-10       yes
# 20       1 2010-09-23        no

by(dat, cut(dat$date, "1 year"), \(x)
   with(x, c(year=as.integer(strftime(date[[1]], '%Y')), 
             `number of bird.ID`=length(unique(bird.ID)), 
             `number of face.data`=length(unique(bird.ID[face.data == 'yes']))))) |>
  do.call(what=rbind) |> `rownames<-`(NULL) |> as.data.frame()

#   year number of bird.ID number of face.data
# 1 2008                 4                   2
# 2 2009                 4                   2
# 3 2010                 3                   1

Data:

n <- 20
set.seed(42)
dat <- data.frame(bird.ID=sample(1:5, n, replace=TRUE),
                  date=sample(seq.Date(as.Date('2008-01-01'), as.Date('2011-01-01'), 'day'), n, replace=TRUE),
                  face.data=sample(c('yes', 'no'), n, replace=TRUE))

CodePudding user response:

Using data.table:

dt <- data.table(df)
unique(dt[, .(bird.ID, year = year(date), face.data)])[
  , .(`number of bird.ID` = length(unique(bird.ID)), 
      `number of face.data` = sum(face.data=="yes")), 
  by=.(year)]

   year number of bird.ID number of face.data
1: 2010                 1                   1
2: 2013                 3                   3
3: 2014                 1                   0
4: 2016                 1                   1
5: 2017                 1                   1

CodePudding user response:

You can fix the problem quickly by using a little function:

yes_prop<-function(x)
{
  number_of_bird.ID<-length(unique(x$bird.ID)) # number of unique bird.IDs
  number_of_face.data<-length(unique(x$bird.ID[x$face.data=="yes"])) # setting "yes", number of unique bird.IDs
  data.frame(number_of_bird.ID,number_of_face.data)
}

For a simplified dates data.frame:

df <- data.frame(
  bird.ID = c(001, 001, 001, 002, 002, 002, 006 ,006, 007, 007, 007, 007), 
  date = c(2010, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2014, 2016, 2017, 2017), 
  face.data = c("yes", "yes", "no","yes", "yes", "no","yes", "yes", "no","yes", "yes", "no")
)

do.call(rbind,by(df,df$date, yes_prop)) # applying function year by year

enter image description here

Anyway, I have no doubt smarter solutions could be provided by any other user.

  • Related