Home > database >  How to Produce a Confusion Matrix using the 'gbm' Method in the Caret Package
How to Produce a Confusion Matrix using the 'gbm' Method in the Caret Package

Time:06-03

Issue:

I'm a beginner at building classification models, so I am sorry if this question might sound terminologically incorrect. I will try my best. I am having trouble interpreting the error messages that I am receiving when creating a confusion matrix using the e1071 package.

I have tried many solutions to fix the errors but I really can't comprehend how to move further to successfully produce a confusion matrix using the gbm method (see below). I have tried my best to try and fix the error and I feel confused.

Error: `data` and `reference` should be factors with the same levels.

This exercise is part of a university assignment and I would be really grateful if anybody can help me solve this issue and explain what these error messages mean as a learning exercise.

My data has nine continuous independent variables, and one dependent variable called 'Country'.

Another post suggested that:
the error means that you need to give it factors as inputs (train[[predict]] > c is not a factor). Try using factor(ifelse(...), levels) instead).

I'm developing a gbm model using Caret package.

#install packages
library(gbm)
library(caret)
library(e1701)

set.seed(45L)

#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
NewClusters=Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

#Produce a dataframe
NewCluster<-as.data.frame(NewClusters)

#Split the training and testing data 70:30
training.parameters <- Cluster_Dummy_2$Country %>% 
createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]

dim(train.data)
#259  10

dim(test.data)
#108  10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
                          method = "repeatedcv",
                          number = 10,
                          ## repeated ten times
                          repeats = 10,
                          classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
summary(gbmFit1)

#Predict the model with the test data
pred_model_Tree1 = predict(gbmFit1, newdata = head(test.data$Country), type = "prob")
pred_model_Tree1

print(pred_model_Tree1)

Confusion Matrix

#Confusion Matrix
confusionMatrix(pred_model_Tree1, test.data$Country)

#Error
Error: `data` and `reference` should be factors with the same levels.

What type of objects are pred_model_Tree1 & test.data$Country

typeof(pred_model_Tree1)
#list

typeof(test.data$Country)
#"integer"

#Convert both objects into factors
test.data$Country<-as.factor(test.data$Country)

#check
str(test.data)

'data.frame':   108 obs. of  10 variables:
 $ Country    : Factor w/ 3 levels "France","Holland",..: 2 1 1 2 1 2 1 1 2 2 ...

#str(pred_model_Tree1)
#data.frame':   6 obs. of  3 variables:
 #$ France     : num  0.00311 0.98187 0.98882 0.00935 0.99632 ...
 #$ Holland    : num  9.24e-01 1.41e-03 1.58e-03 4.45e-01 1.86e-05 
 #$ Spain: num  0.073 0.01672 0.0096 0.54539 0.00366 ...

  #Differences: 
    pred_model_Tree1 (three columns; 6 obs; 3 variables); 
    test.data (11 columns; 6 obs, dependent variable - 3 levels)
    Question: How to transform both objects to follow the same structure and the same levels
    
#Check the number of rows of the test.data
nrow(test.data)
#108

#Check the number of rows of the predicted output
nrow(pred_model_Tree1)
#6

#What are the levels
levels(pred_model_Tree1)
#NULL

levels(test.data$Country)
#[1] "France"      "Holland"     "Spain"

table(test.data$Country)
#France     Holland Spain 
#35         36         37 

I found a really good Stackoverflow question here to try and solve the issue and I tried to find a solution

#If you can't get the confusion matrix to work, break it down'
#Error: data and reference data should be factors with the same levels

#confusionMatrix(predicted, actual)
table(pred_model_Tree1) #Predicted

#       France      Holland       Spain
#1 0.003110462 9.238903e-01 0.072999195
#2 0.981868172 1.408983e-03 0.016722845
#3 0.988820237 1.575354e-03 0.009604409
#4 0.009346725 4.452638e-01 0.545389520
#5 0.996322192 1.864682e-05 0.003659161
#6 0.012668621 9.803462e-01 0.006985212

table(test.data$Country) #Actual

#France     Holland Spain 
#38         46         24 

#Great, they both have the same column headings

#Do the predicted and actual data match (are they factors)

confusionMatrix(as.factor(pred_model_Tree1), as.factor(test.data$Country))

#Error in confusionMatrix.default(as.factor(pred_model_Tree1), as.factor(test.data$Country)) : 
#The data must contain some levels that overlap the reference.
#In addition: Warning message:
#  In xtfrm.data.frame(x) : cannot xtfrm data frames

#format() treats the elements of a vector as character strings using a common format. 
pred<-format(round(predict(pred_model_Tree1, test.data)))

#Error 
Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "data.frame"

#One answer contained a custom made function
#They suggest that at least one number in the test.data that is never predicted. This is what is meant why "different number of levels". 

table(factor(pred_model_Tree1, levels=min(test.data):max(test.data)), 
      factor(test.data$Country, levels=min(test.data):max(test.data)))

#Error
Error in FUN(X[[i]], ...) : 
  only defined on a data frame with all numeric-alike variables

#Lastly, I found a function on StackOverflow that can be used to fix the unequal levels problem

# Create a confusion matrix from the given outcomes, whose rows correspond
# to the actual and the columns to the predicated classes.
createConfusionMatrix <- function(act, pred) {
  # You've mentioned that neither actual nor predicted may give a complete
  # picture of the available classes, hence:
  numClasses <- max(act, pred)
  # Sort predicted and actual as it simplifies what's next. You can make this
  # faster by storing `order(act)` in a temporary variable.
  pred <- pred[order(act)]
  act  <- act[order(act)]
  sapply(split(pred, act), tabulate, nbins=numClasses)
}

act<-pred_model_Tree1
pred<-test.data$Country

print(createConfusionMatrix(act, pred))

#Error
Error in FUN(X[[i]], ...) : 
  only defined on a data frame with all numeric-alike variables

Data

 structure(list(Low.Freq = c(435L, 94103292L, 1L, 2688L, 8471L, 
28818L, 654755585L, 468628164L, 342491L, 2288474L, 3915L, 411L, 
267864894L, 3312618L, 5383L, 8989443L, 1894L, 534981L, 9544861L, 
3437614L, 475386L, 7550764L, 48744L, 2317845L, 5126197L, 2445L, 
8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L, 9L, 605L, 
9199L, 3022L, 30218156L, 46423L, 38L, 88L, 396396244L, 28934316L, 
7723L, 95688045L, 679354L, 716352L, 76289L, 332826763L, 6L, 90975L, 
83103577L, 9529L, 229093L, 42810L, 5L, 18175302L, 1443751L, 5831L, 
8303661L, 86L, 778L, 23947L, 8L, 9829740L, 2075838L, 7434328L, 
82174987L, 2L, 94037071L, 9638653L, 5L, 3L, 65972L, 0L, 936779338L, 
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L, 
4440739L, 612L, 3966L, 8L, 9255L, 84127L, 96218L, 5690L, 56L, 
3561L, 78738L, 1803363L, 809369L, 7131L, 0L), High.Freq = c(6071L, 
3210L, 6L, 7306092L, 6919054L, 666399L, 78L, 523880161L, 4700783L, 
4173830L, 30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L, 
74L, 1L, 65422L, 595L, 89093186L, 946520L, 6940919L, 655350L, 
4L, 6L, 618L, 2006697L, 889L, 1398L, 28769L, 90519642L, 984L, 
0L, 296209525L, 487088392L, 5L, 894L, 529L, 5L, 99106L, 2L, 926017L, 
9078L, 1L, 21L, 88601017L, 575770L, 48L, 8431L, 194L, 62324996L, 
5L, 81L, 40634727L, 806901520L, 6818173L, 3501L, 91780L, 36106039L, 
5834347L, 58388837L, 34L, 3280L, 6507606L, 19L, 402L, 584L, 76L, 
4078684L, 199L, 6881L, 92251L, 81715L, 40L, 327L, 57764L, 97668898L, 
2676483L, 76L, 4694L, 817120L, 51L, 116712L, 666L, 3L, 42841L, 
9724L, 21L, 4L, 359L, 2604L, 22L, 30490L, 5640L, 34L, 51923625L, 
35544L), Peak.Freq = c(87005561L, 9102L, 994839015L, 42745869L, 
32840L, 62737133L, 2722L, 24L, 67404881L, 999242982L, 3048L, 
85315406L, 703037627L, 331264L, 8403609L, 3934064L, 50578953L, 
370110665L, 3414L, 12657L, 40L, 432L, 7707L, 214L, 68588962L, 
69467L, 75L, 500297L, 704L, 1L, 102659072L, 60896923L, 4481230L, 
94124925L, 60164619L, 447L, 580L, 8L, 172L, 9478521L, 20L, 53L, 
3072127L, 2160L, 27301893L, 8L, 4263L, 508L, 712409L, 50677L, 
522433683L, 112844L, 193385L, 458269L, 93578705L, 22093131L, 
6L, 9L, 1690461L, 0L, 4L, 652847L, 44767L, 21408L, 5384L, 304L, 
721L, 651147L, 2426L, 586L, 498289375L, 945L, 6L, 816L, 46207L, 
39135L, 6621028L, 66905L, 26905085L, 4098L, 0L, 14L, 88L, 530L, 
97809006L, 90L, 6L, 260792844L, 9L, 833205723L, 99467321L, 5L, 
8455640L, 54090L, 2L, 309L, 299161148L, 4952L, 454824L), Delta.Freq = c(5L, 
78L, 88553L, 794L, 5L, 3859122L, 782L, 36L, 8756801L, 243169338L, 
817789L, 8792384L, 7431L, 626921743L, 9206L, 95789L, 7916L, 8143453L, 
6L, 4L, 6363L, 181125L, 259618L, 6751L, 33L, 37960L, 0L, 2L, 
599582228L, 565585L, 19L, 48L, 269450424L, 70676581L, 7830566L, 
4L, 86484313L, 21L, 90899794L, 2L, 72356L, 574280L, 869544L, 
73418L, 6468164L, 2259L, 5938505L, 31329L, 1249L, 354L, 8817L, 
3L, 2568L, 82809L, 29836269L, 5230L, 37L, 33752014L, 79307L, 
1736L, 8522076L, 40L, 2289135L, 862L, 801448L, 8026L, 5L, 15L, 
4393771L, 405914L, 71098L, 950288L, 8319L, 1396973L, 832L, 70L, 
1746L, 61907L, 8709547L, 300750537L, 45862L, 91417085L, 79892L, 
47765L, 5477L, 18L, 4186L, 2860L, 754038591L, 375L, 53809223L, 
72L, 136L, 509L, 232325L, 13128104L, 1692L, 8581L, 23L), Delta.Time = c(1361082L, 
7926L, 499L, 5004L, 3494530L, 213L, 64551179L, 70L, 797L, 5L, 
72588L, 86976L, 5163L, 635080L, 3L, 91L, 919806257L, 81443L, 
3135427L, 4410972L, 5810L, 8L, 46603718L, 422L, 1083626L, 48L, 
15699890L, 7L, 90167635L, 446459879L, 2332071L, 761660L, 49218442L, 
381L, 46L, 493197L, 46L, 798597155L, 45342274L, 6265842L, 6L, 
3445819L, 351L, 1761227L, 214L, 959L, 908996387L, 6L, 3855L, 
9096604L, 152664L, 7970052L, 32366926L, 31L, 5201618L, 114L, 
7806411L, 70L, 239L, 5065L, 2L, 1L, 14472831L, 122042249L, 8L, 
495604L, 29L, 8965478L, 2875L, 959L, 39L, 9L, 690L, 933626665L, 
85294L, 580093L, 95934L, 982058L, 65244056L, 137508L, 29L, 7621L, 
7527L, 72L, 2L, 315L, 6L, 2413L, 8625150L, 51298109L, 851L, 890460L, 
160736L, 6L, 850842734L, 2L, 7L, 76969113L, 190536L), Peak.Time = c(1465265L, 
452894L, 545076172L, 8226275L, 5040875L, 700530L, 1L, 3639L, 
20141L, 71712131L, 686L, 923L, 770569738L, 69961L, 737458636L, 
122403L, 199502046L, 6108L, 907L, 108078263L, 7817L, 4L, 6L, 
69L, 721L, 786353L, 87486L, 1563L, 876L, 47599535L, 79295722L, 
53L, 7378L, 591L, 6607935L, 954L, 6295L, 75514344L, 5742050L, 
25647276L, 449L, 328566184L, 4L, 2L, 2703L, 21367543L, 63429043L, 
708L, 782L, 909820L, 478L, 50L, 922L, 579882L, 7850L, 534L, 2157492L, 
96L, 6L, 716L, 5L, 653290336L, 447854237L, 2L, 31972263L, 645L, 
7L, 609909L, 4054695L, 455631L, 4919894L, 9L, 72713L, 9997L, 
84090765L, 89742L, 5L, 5028L, 4126L, 23091L, 81L, 239635020L, 
3576L, 898597785L, 6822L, 3798L, 201999L, 19624L, 20432923L, 
18944093L, 930720236L, 1492302L, 300122L, 143633L, 5152743L, 
417344L, 813L, 55792L, 78L), Center_Freq = c(61907L, 8709547L, 
300750537L, 45862L, 91417085L, 79892L, 47765L, 5477L, 18L, 4186L, 
2860L, 754038591L, 375L, 53809223L, 72L, 136L, 4700783L, 4173830L, 
30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L, 74L, 1L, 65422L, 
595L, 89093186L, 946520L, 6940919L, 48744L, 2317845L, 5126197L, 
2445L, 8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L, 
9L, 651547554L, 45554L, 38493L, 91055218L, 38L, 1116474L, 2295482L, 
3001L, 9L, 3270L, 141L, 53644L, 667983L, 565598L, 84L, 971L, 
555498297L, 60431L, 6597L, 856943893L, 607815536L, 4406L, 79L, 
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L, 
4440739L, 754038591L, 375L, 53809223L, 72L, 136L, 509L, 232325L, 
13128104L, 1692L, 8581L, 23L, 5874213L, 4550L, 644668065L, 3712371L, 
5928L, 8833L, 7L, 2186023L, 61627221L, 37297L, 716427989L, 21387L
), Start.Freq = c(426355L, 22073538L, 680374L, 41771L, 54L, 6762844L, 
599171L, 108L, 257451851L, 438814L, 343045L, 4702L, 967787L, 
1937L, 18L, 89301735L, 366L, 90L, 954L, 7337732L, 70891703L, 
4139L, 10397931L, 940000382L, 7L, 38376L, 878528819L, 6287L, 
738366L, 31L, 47L, 5L, 6L, 77848L, 2366508L, 45L, 3665842L, 7252260L, 
6L, 61L, 3247L, 448348L, 1L, 705132L, 144L, 7423637L, 2L, 497L, 
844927639L, 78978L, 914L, 131L, 7089563L, 927L, 9595581L, 2774463L, 
1651L, 73509280L, 7L, 35L, 18L, 96L, 1L, 92545512L, 27354947L, 
7556L, 65019L, 7480L, 71835L, 8249L, 64792L, 71537L, 349389666L, 
280244484L, 82L, 6L, 40L, 353872L, 0L, 103L, 1255L, 4752L, 29L, 
76L, 81185L, 14L, 9L, 470775630L, 818361265L, 57947209L, 44L, 
24L, 41295L, 4L, 261449L, 9931404L, 773556640L, 930717L, 65007421L
), End.Freq = c(71000996L, 11613579L, 71377155L, 1942738L, 8760748L, 
79L, 455L, 374L, 8L, 5L, 2266932L, 597833L, 155488L, 3020L, 4L, 
554L, 4L, 16472L, 1945649L, 668181101L, 649780L, 22394365L, 93060602L, 
172146L, 20472L, 23558847L, 190513L, 22759044L, 44L, 78450L, 
205621181L, 218L, 69916344L, 23884L, 66L, 312148L, 7710564L, 
4L, 422L, 744572L, 651547554L, 45554L, 38493L, 91055218L, 38L, 
1116474L, 2295482L, 3001L, 9L, 3270L, 141L, 55595L, 38451L, 8660867L, 
14L, 96L, 345L, 6L, 44L, 8235824L, 910517L, 1424326L, 87102566L, 
53644L, 667983L, 565598L, 84L, 971L, 555498297L, 60431L, 6597L, 
856943893L, 607815536L, 4406L, 79L, 7L, 28978746L, 7537295L, 
6L, 633L, 345860066L, 802L, 1035131L, 602L, 2740L, 8065L, 61370968L, 
429953765L, 981507L, 8105L, 343787257L, 44782L, 64184L, 12981359L, 
123367978L, 818775L, 123745614L, 25345654L, 3L), Country = c("Holland", 
"Holland", "Holland", "Holland", "Holland", "Holland", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Holland", "Holland", "Holland", 
"Holland", "Holland", "Holland", "France", "France", "France", 
"France", "France", "France", "France", "France", "France", "France", 
"France", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "France", "France", "France", "France", "Holland", 
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland", 
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Holland", "Holland", "Holland", "Holland", "France", "France", 
"France", "France", "France", "France", "France", "Spain", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain", 
"Spain", "Spain", "France", "France", "France")), row.names = c(NA, 
99L), class = "data.frame")

CodePudding user response:

Thanks for including all the required information; I believe this is the solution to your problem:

library(magrittr)
library(gbm)
#> Loaded gbm 2.1.8
library(caret)
#> Loading required package: ggplot2
#> Loading required package: lattice
library(e1071)

set.seed(45L)

# Load in your example data to an object ("data")
#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
Cluster_Dummy_2 <- data
NewClusters <- Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

NewCluster<-as.data.frame(NewClusters)

training.parameters <- Cluster_Dummy_2$Country %>% 
  createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]

dim(train.data)
#> [1] 70 11
#259  10

dim(test.data)
#> [1] 29 11
#108  10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
  method = "repeatedcv",
  number = 10,
  ## repeated ten times
  repeats = 10,
  classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
#> Stochastic Gradient Boosting 
#> 
#> 70 samples
#> 10 predictors
#>  2 classes: 'France', 'Holland' 
#> 
#> No pre-processing
#> Resampling: Cross-Validated (10 fold, repeated 10 times) 
#> Summary of sample sizes: 64, 64, 63, 63, 63, 62, ... 
#> Resampling results across tuning parameters:
#> 
#>   interaction.depth  n.trees  Accuracy   Kappa    
#>   1                   50      0.7397619  0.4810245
#>   1                  100      0.7916667  0.5816756
#>   1                  150      0.8204167  0.6392434
#>   2                   50      0.7396429  0.4813670
#>   2                  100      0.7943452  0.5901254
#>   2                  150      0.8380357  0.6768166
#>   3                   50      0.7361905  0.4711780
#>   3                  100      0.7966071  0.5897921
#>   3                  150      0.8356548  0.6694202
#> 
#> Tuning parameter 'shrinkage' was held constant at a value of 0.1
#> 
#> Tuning parameter 'n.minobsinnode' was held constant at a value of 10
#> Accuracy was used to select the optimal model using the largest value.
#> The final values used for the model were n.trees = 150, interaction.depth =
#>  2, shrinkage = 0.1 and n.minobsinnode = 10.
summary(gbmFit1)

#>                     var   rel.inf
#> ID                   ID 66.517974
#> Center_Freq Center_Freq  6.624256
#> Start.Freq   Start.Freq  5.545827
#> Delta.Time   Delta.Time  5.033223
#> Peak.Time     Peak.Time  4.951384
#> End.Freq       End.Freq  3.211461
#> Delta.Freq   Delta.Freq  2.352933
#> Low.Freq       Low.Freq  2.207371
#> High.Freq     High.Freq  1.951895
#> Peak.Freq     Peak.Freq  1.603675

#Predict the model with the test data
pred_model_Tree1 <- predict(object = gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
#>         France     Holland
#> 1  0.919393487 0.080606513
#> 2  0.095638010 0.904361990
#> 3  0.019038102 0.980961898
#> 4  0.045807668 0.954192332
#> 5  0.157809127 0.842190873
#> 6  0.987391435 0.012608565
#> 7  0.011436393 0.988563607
#> 8  0.032262438 0.967737562
#> 9  0.151393564 0.848606436
#> 10 0.993447390 0.006552610
#> 11 0.020833439 0.979166561
#> 12 0.993910239 0.006089761
#> 13 0.009170816 0.990829184
#> 14 0.010519644 0.989480356
#> 15 0.995338954 0.004661046
#> 16 0.994153479 0.005846521
#> 17 0.998099611 0.001900389
#> 18 0.056571139 0.943428861
#> 19 0.801327096 0.198672904
#> 20 0.192220458 0.807779542
#> 21 0.899189477 0.100810523
#> 22 0.766542297 0.233457703
#> 23 0.940046468 0.059953532
#> 24 0.069087397 0.930912603
#> 25 0.916674076 0.083325924
#> 26 0.023676968 0.976323032
#> 27 0.996824979 0.003175021
#> 28 0.996068088 0.003931912
#> 29 0.096807861 0.903192139

# Evaluate each prediction, i.e. if the predicted likelihood that the country is France is '0.9'
# and the likelihood it's Holland is '0.1', then the prediction is "France"
pred_model_Tree1$evaluation <- ifelse(pred_model_Tree1$France >= 0.5, "France", "Holland")

# Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
                factor(test.data$Country, levels = unique(test.data$Country)))
#> Confusion Matrix and Statistics
#> 
#>           Reference
#> Prediction France Holland
#>    France      13       1
#>    Holland      0      15
#>                                           
#>                Accuracy : 0.9655          
#>                  95% CI : (0.8224, 0.9991)
#>     No Information Rate : 0.5517          
#>     P-Value [Acc > NIR] : 7.947e-07       
#>                                           
#>                   Kappa : 0.9308          
#>                                           
#>  Mcnemar's Test P-Value : 1               
#>                                           
#>             Sensitivity : 1.0000          
#>             Specificity : 0.9375          
#>          Pos Pred Value : 0.9286          
#>          Neg Pred Value : 1.0000          
#>              Prevalence : 0.4483          
#>          Detection Rate : 0.4483          
#>    Detection Prevalence : 0.4828          
#>       Balanced Accuracy : 0.9688          
#>                                           
#>        'Positive' Class : France          
#> 

Created on 2022-06-02 by the reprex package (v2.0.1)


Edit

Something seems wrong - perhaps you want to remove the IDs before you train/test the model? (Maybe they weren't randomly assigned?) E.g.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(gbm)
#> Loaded gbm 2.1.8
library(caret)
#> Loading required package: ggplot2
#> Loading required package: lattice
library(e1071)

set.seed(45L)

#Produce a new version of the data frame 'Clusters_Dummy' with the rows shuffled
Cluster_Dummy_2 <- data
NewClusters <- Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]

NewCluster<-as.data.frame(NewClusters)

training.parameters <- Cluster_Dummy_2$Country %>% 
  createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ] %>%
  select(-ID)
test.data <- NewClusters[-training.parameters, ] %>%
  select(-ID)

dim(train.data)
#> [1] 70 10

dim(test.data)
#> [1] 29 10

#Auxiliary function for controlling model fitting
#10 fold cross validation; 10 times
fitControl <- trainControl(## 10-fold CV
  method = "repeatedcv",
  number = 10,
  ## repeated ten times
  repeats = 10,
  classProbs = TRUE)
#Fit the model
gbmFit1 <- train(Country ~ ., data=train.data, 
                 method = "gbm", 
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE)
gbmFit1
#> Stochastic Gradient Boosting 
#> 
#> 70 samples
#>  9 predictor
#>  2 classes: 'France', 'Holland' 
#> 
#> No pre-processing
#> Resampling: Cross-Validated (10 fold, repeated 10 times) 
#> Summary of sample sizes: 64, 64, 63, 63, 63, 62, ... 
#> Resampling results across tuning parameters:
#> 
#>   interaction.depth  n.trees  Accuracy   Kappa     
#>   1                   50      0.5515476  0.08773090
#>   1                  100      0.5908929  0.17272118
#>   1                  150      0.5958333  0.18280502
#>   2                   50      0.5386905  0.06596478
#>   2                  100      0.5767262  0.13757567
#>   2                  150      0.5785119  0.14935661
#>   3                   50      0.5575000  0.09991455
#>   3                  100      0.5585119  0.10906906
#>   3                  150      0.5780952  0.14820067
#> 
#> Tuning parameter 'shrinkage' was held constant at a value of 0.1
#> 
#> Tuning parameter 'n.minobsinnode' was held constant at a value of 10
#> Accuracy was used to select the optimal model using the largest value.
#> The final values used for the model were n.trees = 150, interaction.depth =
#>  1, shrinkage = 0.1 and n.minobsinnode = 10.
summary(gbmFit1)

#>                     var   rel.inf
#> Center_Freq Center_Freq 14.094306
#> High.Freq     High.Freq 14.060959
#> Peak.Time     Peak.Time 13.503953
#> Peak.Freq     Peak.Freq 11.358891
#> Delta.Time   Delta.Time  9.964882
#> Low.Freq       Low.Freq  9.610686
#> End.Freq       End.Freq  9.308919
#> Delta.Freq   Delta.Freq  9.097253
#> Start.Freq   Start.Freq  9.000152

#Predict the model with the test data
pred_model_Tree1 <- predict(object = gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
#>        France    Holland
#> 1  0.75514031 0.24485969
#> 2  0.44409692 0.55590308
#> 3  0.15027904 0.84972096
#> 4  0.49861536 0.50138464
#> 5  0.95406713 0.04593287
#> 6  0.82122854 0.17877146
#> 7  0.27931450 0.72068550
#> 8  0.50113421 0.49886579
#> 9  0.61912973 0.38087027
#> 10 0.91005442 0.08994558
#> 11 0.42625105 0.57374895
#> 12 0.27339404 0.72660596
#> 13 0.14520192 0.85479808
#> 14 0.16607144 0.83392856
#> 15 0.97198722 0.02801278
#> 16 0.88614818 0.11385182
#> 17 0.65561219 0.34438781
#> 18 0.86793709 0.13206291
#> 19 0.28583233 0.71416767
#> 20 0.97002073 0.02997927
#> 21 0.74408374 0.25591626
#> 22 0.28408111 0.71591889
#> 23 0.07257257 0.92742743
#> 24 0.22724577 0.77275423
#> 25 0.32581206 0.67418794
#> 26 0.59713799 0.40286201
#> 27 0.75814205 0.24185795
#> 28 0.94018097 0.05981903
#> 29 0.51155700 0.48844300

# Evaluate each prediction, i.e. if the predicted likelihood that the country is France is '0.9'
# and the likelihood it's Holland is '0.1', then the prediction is "France"
pred_model_Tree1$evaluation <- ifelse(pred_model_Tree1$France >= 0.5, "France", "Holland")

# Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
                factor(test.data$Country, levels = unique(test.data$Country)))
#> Confusion Matrix and Statistics
#> 
#>           Reference
#> Prediction France Holland
#>    France       9       7
#>    Holland      4       9
#>                                           
#>                Accuracy : 0.6207          
#>                  95% CI : (0.4226, 0.7931)
#>     No Information Rate : 0.5517          
#>     P-Value [Acc > NIR] : 0.2897          
#>                                           
#>                   Kappa : 0.2494          
#>                                           
#>  Mcnemar's Test P-Value : 0.5465          
#>                                           
#>             Sensitivity : 0.6923          
#>             Specificity : 0.5625          
#>          Pos Pred Value : 0.5625          
#>          Neg Pred Value : 0.6923          
#>              Prevalence : 0.4483          
#>          Detection Rate : 0.3103          
#>    Detection Prevalence : 0.5517          
#>       Balanced Accuracy : 0.6274          
#>                                           
#>        'Positive' Class : France          
#> 

Created on 2022-06-02 by the reprex package (v2.0.1)

  • Related