Home > database >  ValueError: shapes (784,32) and (10,784) not aligned: 32 (dim 1) != 10 (dim 0) for Neural Network
ValueError: shapes (784,32) and (10,784) not aligned: 32 (dim 1) != 10 (dim 0) for Neural Network

Time:06-20

I'm trying to build a simple Neural Network library from scratch similar to Keras, but I'm having issues getting the training to work properly. It's been a while since I've written a NN from scratch instead of using a library, so I thought it would be good practice.

I'm not quite sure I have the constructor set up properly for the case that no input shape is given, and I keep running into the "ValueError: shapes X and Y not aligned" issue regardless of what number of neurons I pass the layer or the input shape. Here's the traceback:

Traceback (most recent call last):  File "NNfromScratch.py", line 551, in <module>
    model.train(X_train, y_train, epochs=100, batch_size=10, verbose=True)
  File "NNfromScratch.py", line 427, in train
    self.forward(batch_inputs)
  File "NNfromScratch.py", line 395, in forward
    self.outputs = layer.forward(self.outputs)
  File "NNfromScratch.py", line 153, in forward
    **self.outputs = np.dot(self.weights.T, inputs)   self.biases**
  File "<__array_function__ internals>", line 6, in dot
ValueError: shapes (784,32) and (10,784) not aligned: 32 (dim 1) != 10 (dim 0)

The error is thrown from the forward function of the Dense layer.

The full (reproducible) code can be seen here.

Here's the snippet of the most important parts, though:

import time
import numpy as np
import pandas as pd
import pickle as pkl
import matplotlib.pyplot as plt
import tensorflow.keras.datasets.mnist as mnist

...

class Layers:
    class Dense:
        def __init__(self, neurons=0, activation=Activations.ReLU, inputs=0, dropout_rate=1):
            # Initialize weights and biases
            self.weights = np.random.randn(neurons, inputs)
            self.biases = np.random.randn(1, neurons)
            self.activation = activation
            self.dropout_rate = dropout_rate
        
        # Forward-Propagation
        def forward(self, inputs):
            self.inputs = inputs
            self.outputs = np.dot(self.weights.T, inputs)   self.biases
            self.outputs = self.activation(self.outputs)
            self.outputs = self.dropout(self.outputs)
            return self.outputs
        
        # Backward-Propagation
        def backward(self, error, learning_rate):
            self.error = error
            self.delta = self.error * self.activation(self.outputs)
            self.delta = self.dropout(self.delta, derivative=True)
            self.weights -= learning_rate * np.dot(self.delta, self.inputs.T)
            self.biases -= learning_rate * np.sum(self.delta, axis=0, keepdims=True)
            return self.delta
        
        # Dropout
        def dropout(self, x, derivative=False):
            if derivative:
                return self.dropout_rate * (1 - self.dropout_rate) * x
            return self.dropout_rate * x


class NeuralNetwork:
    """..."""

    
    def forward(self, inputs):
        # Forward-Propagation
        self.inputs = inputs
        self.outputs = self.inputs
        for layer in self.layers:
            self.outputs = layer.forward(self.outputs)
        return self.outputs
    
    def backward(self, targets):
        # Backward-Propagation
        self.targets = targets
        self.error = self.loss(self.outputs, self.targets)
        self.delta = self.error
        for layer in reversed(self.layers):
            self.delta = layer.backward(self.delta, self.optimizer_kwargs)
        return self.delta
    
    def update_weights(self):
        # Update weights and biases
        for layer in self.layers:
            layer.update_weights(self.optimizer_kwargs)
    
    def train(self, inputs, targets, epochs=1, batch_size=1, verbose=False):
        self.epochs = epochs
        self.epoch_errors = []
        self.epoch_losses = []
        self.epoch_accuracies = []
        self.epoch_times = []
        start = time.time()
        for epoch in range(self.epochs):
            epoch_start = time.time()
            epoch_error = 0
            epoch_loss = 0
            epoch_accuracy = 0
            for i in range(0, inputs.shape[0], batch_size):
                batch_inputs = inputs[i:i batch_size]
                batch_targets = targets[i:i batch_size]
                self.forward(batch_inputs)
                self.backward(batch_targets)
                self.update_weights()
                epoch_error  = self.error.sum()
                epoch_loss  = self.loss(self.outputs, self.targets).sum()
                epoch_accuracy  = self.accuracy(self.outputs, self.targets)
            epoch_time = time.time() - epoch_start
            self.epoch_errors.append(epoch_error)
            self.epoch_losses.append(epoch_loss)
            self.epoch_accuracies.append(epoch_accuracy)
            self.epoch_times.append(epoch_time)
            if verbose:
                print('Epoch: {}, Error: {}, Loss: {}, Accuracy: {}, Time: {}'.format(epoch, epoch_error, epoch_loss, epoch_accuracy, epoch_time))
        self.train_time = time.time() - start
        return self.epoch_errors, self.epoch_losses, self.epoch_accuracies, self.epoch_times



# Load and flatten data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape((X_train.shape[0], -1))
X_test = X_test.reshape((X_test.shape[0], -1))
# Build model
model = NeuralNetwork([
    Layers.Dense(32, Activations.ReLU, inputs=X_train.shape[1]),
    Layers.Dense(10, Activations.ReLU),
    Layers.Dense(1, Activations.Softmax)
], Losses.Categorical_Cross_Entropy, Optimizers.SGD, learning_rate=0.01)
model.train(X_train, y_train, epochs=100, batch_size=10, verbose=True)
model.evaluate(X_test, y_test)

CodePudding user response:

Change this line:

self.outputs = np.dot(self.weights.T, inputs)   self.biases

to

self.outputs = np.dot(inputs, self.weights.T)   self.biases

The reason being is that the inner dimensions need to align. Your inputs is of shape [B,784] (where B is batch size) and your weights are of shape [32,784].

  • Related