I have a dataset that contains the following values
Item Number Sales in Dollars
1 50 10
2 50 15
3 60 20
4 60 30
5 70 35
6 70 45
I would like to reshape the data such that the result would be
50 60 70
1 10 20 35
2 15 30 45
How could I go about achieving this?
CodePudding user response:
We could use pivot_wider
:
The trick is to group_by
and create an id
in the the group to get this output, otherwise you will get a list with NAs
library(dplyr)
library(tidyr)
df %>%
group_by(ItemNumber) %>%
mutate(id = row_number()) %>%
pivot_wider(names_from=ItemNumber, values_from = SalesinDollars) %>%
select(-id)
`50` `60` `70`
<int> <int> <int>
1 10 20 35
2 15 30 45
CodePudding user response:
in Base R:
unstack(df, Sales_in_Dollars~Item_Number)
X50 X60 X70
1 10 20 35
2 15 30 45
CodePudding user response:
With data.table
:
data.table::dcast(as.data.table(df),
rowid(`Item.Number`) ~ `Item.Number`,
value.var = "Sales.in.Dollars")[, -1]
Output
50 60 70
<int> <int> <int>
1: 10 20 35
2: 15 30 45
CodePudding user response:
Another possible solution, based on tidyverse
:
library(tidyverse)
df %>%
pivot_wider(names_from = item, values_from = sales, values_fn = list) %>%
unnest(everything())
#> # A tibble: 2 x 3
#> `50` `60` `70`
#> <int> <int> <int>
#> 1 10 20 35
#> 2 15 30 45