I need to find the difference between values with the same names. I have two csv files that I merged together and placed in another csv file to have a side by side comparison of the number differences.
Below is the sample merged csv file:
Q1Count Q1Names Q2Count Q2Names
2 candy 2 candy
9 apple 8 apple
10 bread 5 pineapple
4 pies 12 bread
3 cookies 4 pies
32 chocolate 3 cookies
[Total count: 60] 27 chocolate
NaN NaN [Total count: 61]
All the names are the same (almost), but I would like to have a way to make a new row space for the new name that popped up under Q2Names
, pinapple
.
Below is the code I implemented so far:
import pandas as pd
import csv
Q1ReportsDir='/path/to/Q1/Reports/'
Q2ReportsDir='/path/to/Q2/Reports/'
Q1lineCount = f'{Q1ReportsDir}Q1Report.csv'
Q2lineCount = f'{Q2ReportsDir}Q2Report.csv'
merged_destination = f'{Q2ReportsDir}DifferenceReport.csv'
diffDF = [pd.read_csv(p) for p in (Q1lineCount, Q2lineCount)]
merged_dataframe = pd.concat(diffDF, axis=1)
merged_dataframe.to_csv(merged_destination, index=False)
diffGenDF = pd.read_csv(merged_destination)
# getting Difference
diffGenDF ['Difference'] = diffGenDF ['Q1Count'] - diffGenDF ['Q2Count']
diffGenDF = diffGenDF [['Difference', 'Q1Count', 'Q1Names', 'Q2Count ', 'Q2Names']]
diffGenDF.to_csv(merged_destination, index=False)
So, making a space under Q1Names
and adding a 0
under Q1Count
in the same row where pineapple
is under column Q2Names
would make this easier to see an accurate difference between the values.
Q1Count Q1Names Q2Count Q2Names
2 candy 2 candy
9 apple 8 apple
0 5 pineapple
10 bread 12 bread
4 pies 4 pies
3 cookies 3 cookies
32 chocolate 27 chocolate
[Total count: 60] [Total count: 61]
The final desired output I would get if I can get past that part is this:
Difference Q1Count Q1Names Q2Count Q2Names
0 2 candy 2 candy
1 9 apple 8 apple
-5 0 5 pineapple
-2 10 bread 12 bread
0 4 pies 4 pies
0 3 cookies 3 cookies
5 32 chocolate 27 chocolate
[Total count: 60] [Total count: 61]
CodePudding user response:
I was able to get your same results using a pd.merge
with the dataframe you provided
df_merge = pd.merge(df1, df2, left_on = 'Q1Names', right_on = 'Q2Names', how = 'outer')
df_merge[['Q1Count', 'Q2Count']] = df_merge[['Q1Count', 'Q2Count']].fillna(0)
df_merge[['Q1Names', 'Q2Names']] = df_merge[['Q1Names', 'Q2Names']].fillna('')
df_merge['Difference'] = df_merge['Q1Count'].sub(df_merge['Q2Count'])