Overview
I want to access the intercepts and coefficients for each level in a multilevel ordinal response model using the ordinal::clmm
function in R
.
I can easily do this with multilevel linear models estimated using lme4::lmer
and calling the coef
function. I can't seem to figure out how to do so with the ordinal model.
Example
Replication dataset
Below is a randomly-generated replication dataset. I create an independent variable ("indv"), a dependent variable ("depv") and an ordinal version of the dependent variable ("depv2") as well as some levels ("level").
test <- data.frame(depv = sample(1:4, 250, replace = TRUE),
indv = runif(250),
level = sample(1:4, 250, replace = TRUE)) %>%
mutate(depv2 = factor(depv, levels = 1:4, labels = c("bad", "okay", "good", "great")),
level = factor(level, levels = 1:4, labels = c("USA", "France", "China", "Brazil")))
Running the models
First, I estimate the linear model:
test1 <- lmer(depv ~ indv (1 indv | level), data = test)
Now, I estimate the ordinal response model:
test2 <- clmm(depv2 ~ indv (1 indv | level), data = test)
How to access the level coefficients?
I can easily access the level intercepts and coefficients for the linear model:
> coef(test1)
$level
(Intercept) indv
USA 2.239171 0.6238428
France 2.766888 -0.4173206
China 1.910860 1.2715852
Brazil 2.839156 -0.5599012
Doing this on the ordinal response model does not produce the same result:
> coef(test2)
bad|okay okay|good good|great indv
-1.13105544 0.09101709 1.32240904 0.37157688
CodePudding user response:
For model test1
fitted by lme4, calling coef(test1)
is internally doing lme4:::coef.merMod(test1)
. This is a user-friendly routine that adds fixed-effect coefficients and random-effect coefficients (conditional mode) together. Below is the source code of this nice function.
## source code of `lme4:::coef.merMod`
function (object, ...)
{
if (length(list(...)))
warning("arguments named \"", paste(names(list(...)),
collapse = ", "), "\" ignored")
fef <- data.frame(rbind(fixef(object)), check.names = FALSE) ## fixed-effect coefficients
ref <- ranef(object, condVar = FALSE) ## random-effect coefficients
refnames <- unlist(lapply(ref, colnames))
nmiss <- length(missnames <- setdiff(refnames, names(fef)))
if (nmiss > 0) {
fillvars <- setNames(data.frame(rbind(rep(0, nmiss))),
missnames)
fef <- cbind(fillvars, fef)
}
val <- lapply(ref, function(x) fef[rep.int(1L, nrow(x)),
, drop = FALSE])
for (i in seq(a = val)) {
refi <- ref[[i]]
row.names(val[[i]]) <- row.names(refi)
nmsi <- colnames(refi)
if (!all(nmsi %in% names(fef)))
stop("unable to align random and fixed effects")
for (nm in nmsi) val[[i]][[nm]] <- val[[i]][[nm]] refi[,
nm]
}
class(val) <- "coef.mer"
val
}
In ordinal however, coef
does not have this functionality. Instead, it simply extracts the $coefficients
of the fitted model. So coef(test2)
is as same as test2$coefficients
. If you read ?clmm
, you will see that this vector collects alpha
(threshold parameters), beta
(fixed-effect coefficients) and tau
(if exists). Therefore, to get an output similar to what lme4 provides, we need to define the following function ourselves.
## inspired by `lme4:::coef.merMod`
coef_ordinal <- function (object, ...)
{
if (length(list(...)))
warning("arguments named \"", paste(names(list(...)),
collapse = ", "), "\" ignored")
fef <- data.frame(rbind(object$beta), check.names = FALSE) ## adapted
ref <- ordinal::ranef(object, condVar = FALSE) ## adapted
refnames <- unlist(lapply(ref, colnames))
nmiss <- length(missnames <- setdiff(refnames, names(fef)))
if (nmiss > 0) {
fillvars <- setNames(data.frame(rbind(rep(0, nmiss))),
missnames)
fef <- cbind(fillvars, fef)
}
val <- lapply(ref, function(x) fef[rep.int(1L, nrow(x)),
, drop = FALSE])
for (i in seq(a = val)) {
refi <- ref[[i]]
row.names(val[[i]]) <- row.names(refi)
nmsi <- colnames(refi)
if (!all(nmsi %in% names(fef)))
stop("unable to align random and fixed effects")
for (nm in nmsi) val[[i]][[nm]] <- val[[i]][[nm]] refi[,
nm]
}
#class(val) <- "coef.mer" ## removed
val
}
You can now call coef_ordinal(test2)
for your desired output.