I am using tidyverse
to do some analysis to a dataset of home prices. I have home prices over time, and I would like to create new columns by applying a vector of down payments to output a new column for each down payment percentage.
set.seed(100)
dates <- seq.Date(from = as.Date('2010-01-01'), to = as.Date('2010-12-01'), by = 'months')
prices <- rnorm(12, mean = 100000, sd = 5000)
home_vals <- data.frame(dates, prices)
out <- home_vals %>%
mutate(
DownPayment_20 = 0.2 * prices
,DownPayment_10 = 0.1 * prices
,DownPayment_5 = 0.05 * prices
)
head(out)
dates prices DownPayment_20 DownPayment_10 DownPayment_5
1 2010-01-01 97489.04 19497.81 9748.904 4874.452
2 2010-02-01 100657.66 20131.53 10065.766 5032.883
3 2010-03-01 99605.41 19921.08 9960.541 4980.271
4 2010-04-01 104433.92 20886.78 10443.392 5221.696
5 2010-05-01 100584.86 20116.97 10058.486 5029.243
6 2010-06-01 101593.15 20318.63 10159.315 5079.658
I'd like to be able to do this for any number of down payment inputs, by just passing a vector like down_payments <- c(0.2, 0.1, 0.05)
, but I cannot figure out a straightforward way to do this without manually mutating every column. Additionally, I might want to include other vectors with inputs, and use both the down payment vector and the new vector in some calculation, and have a new column for that amount.
Thanks!
CodePudding user response:
How about this:
library(dplyr)
library(purrr)
library(tidyr)
set.seed(100)
dates <- seq.Date(from = as.Date('2010-01-01'), to = as.Date('2010-12-01'), by = 'months')
prices <- rnorm(12, mean = 100000, sd = 5000)
home_vals <- data.frame(dates, prices)
downs <- c(.2, .1, .05)
map(downs, function(x){
home_vals %>%
mutate(!!sym(paste0("DownPayment_", round(x*100))) := prices*x)
}) %>%
do.call(coalesce, .)
#> dates prices DownPayment_20 DownPayment_10 DownPayment_5
#> 1 2010-01-01 97489.04 19497.81 9748.904 4874.452
#> 2 2010-02-01 100657.66 20131.53 10065.766 5032.883
#> 3 2010-03-01 99605.41 19921.08 9960.541 4980.271
#> 4 2010-04-01 104433.92 20886.78 10443.392 5221.696
#> 5 2010-05-01 100584.86 20116.97 10058.486 5029.243
#> 6 2010-06-01 101593.15 20318.63 10159.315 5079.658
#> 7 2010-07-01 97091.05 19418.21 9709.105 4854.552
#> 8 2010-08-01 103572.66 20714.53 10357.266 5178.633
#> 9 2010-09-01 95873.70 19174.74 9587.370 4793.685
#> 10 2010-10-01 98200.69 19640.14 9820.069 4910.034
#> 11 2010-11-01 100449.43 20089.89 10044.943 5022.472
#> 12 2010-12-01 100481.37 20096.27 10048.137 5024.069
Created on 2022-06-30 by the reprex package (v2.0.1)
CodePudding user response:
With data.table
:
library(data.table)
setDT(home_vals)
home_vals[,(paste0("DownPayment_",down_payments*100)):=lapply(down_payments,\(x) x*prices)][]
dates prices DownPayment_20 DownPayment_10 DownPayment_5
<Date> <num> <num> <num> <num>
1: 2010-01-01 97489.04 19497.81 9748.904 4874.452
2: 2010-02-01 100657.66 20131.53 10065.766 5032.883
3: 2010-03-01 99605.41 19921.08 9960.541 4980.271
4: 2010-04-01 104433.92 20886.78 10443.392 5221.696
5: 2010-05-01 100584.86 20116.97 10058.486 5029.243
6: 2010-06-01 101593.15 20318.63 10159.315 5079.658
7: 2010-07-01 97091.05 19418.21 9709.105 4854.552
8: 2010-08-01 103572.66 20714.53 10357.266 5178.633
9: 2010-09-01 95873.70 19174.74 9587.370 4793.685
10: 2010-10-01 98200.69 19640.14 9820.069 4910.034
11: 2010-11-01 100449.43 20089.89 10044.943 5022.472
12: 2010-12-01 100481.37 20096.27 10048.137 5024.069
CodePudding user response:
in Base R use the outer
function or simply %o%
cbind(home_vals, home_vals$prices %o% setNames(downs, paste0('DownPayment_', downs)))
dates prices DownPayment_0.2 DownPayment_0.1 DownPayment_0.05
1 2010-01-01 97489.04 19497.81 9748.904 4874.452
2 2010-02-01 100657.66 20131.53 10065.766 5032.883
3 2010-03-01 99605.41 19921.08 9960.541 4980.271
4 2010-04-01 104433.92 20886.78 10443.392 5221.696
5 2010-05-01 100584.86 20116.97 10058.486 5029.243
6 2010-06-01 101593.15 20318.63 10159.315 5079.658
7 2010-07-01 97091.05 19418.21 9709.105 4854.552
8 2010-08-01 103572.66 20714.53 10357.266 5178.633
9 2010-09-01 95873.70 19174.74 9587.370 4793.685
10 2010-10-01 98200.69 19640.14 9820.069 4910.034
11 2010-11-01 100449.43 20089.89 10044.943 5022.472
12 2010-12-01 100481.37 20096.27 10048.137 5024.069