After doing ps matching, I'm running a poisson model like so:
model <- glm(outcome ~ x1 x2 x3 ... ,
data = d,
weights = psweights$weights,
family = "poisson")
And then want to create a new data frame with the variable names, coefficients, and upper and lower confidence intervals. Just doing:
d2 <- summary(model)$coef
gets me the variable names, coefficients, standard errors, and z values. What is the easiest way to compute confidence intervals, convert them into columns and bind it all into one data frame?
CodePudding user response:
How about this, using the broom
package:
library(broom)
mod <- glm(hp ~ disp drat cyl, data=mtcars, family=poisson)
tidy(mod, conf.int=TRUE)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 2.40 0.196 12.3 1.30e-34 2.02 2.79
#> 2 disp 0.000766 0.000259 2.96 3.07e- 3 0.000258 0.00127
#> 3 drat 0.240 0.0386 6.22 4.89e-10 0.164 0.315
#> 4 cyl 0.236 0.0195 12.1 1.21e-33 0.198 0.274
Created on 2022-06-30 by the reprex package (v2.0.1)