dt = {'tensile_strength': ['15%', '15%', '20%', '20%', '25%', '25%', '30%', '30%'],
'cotton_pct': [7, 7, 12, 17, 14, 18, 19, 25]}
mydt = pd.DataFrame(dt, columns = ['tensile_strength', 'cotton_pct'])
In my above dataset, ‘cotton_pct’ is a categorical variable. For ‘cotton_pct’, how do I create a new variable that is a numerical representation of cotton_pct?
CodePudding user response:
You can access an entire column by .str
, after which you can apply .replace()
to all elements of that column. Convert to 'int'
, and save back into the df
mydt['tensile_strength'] = mydt['tensile_strength'].str.replace("%", '').astype('int')
CodePudding user response:
You can use:
mydt['new_col'] = pd.to_numeric(mydt['tensile_strength'].str.strip('%'))
NB. using a new column here, but you can of course overwrite tensile_strength
output:
tensile_strength cotton_pct new_col
0 15% 7 15
1 15% 7 15
2 20% 12 20
3 20% 17 20
4 25% 14 25
5 25% 18 25
6 30% 19 30
7 30% 25 30