Home > database >  Creating a loop for optimization using random numbers
Creating a loop for optimization using random numbers

Time:07-14

I'm trying to do optimization using random numbers (with specified range of values). My code is below:

x_1 = np.random.uniform(100,1200)
x_2 = np.random.uniform(-5,3)
x_3 = np.random.uniform(20,300)
x_4 = np.random.uniform(1.1,2.9)

params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
rainfall = dataframe['RAINFALL']
potential_evap = dataframe['PE or ETP or Evapotrans (mm)']
simulated_flow = gr4j(rainfall, potential_evap, params, states)

True_Y = df_3 ['Flows (m3/s)']
Simulated_Y = simulated_flow
NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))

for i in range(1,len(df_3)):            
    if 1 < NSE:
        print (NSE)
        if NSE > 0.5:
            print (NSE)
            if 1 < IA:
                print (IA)
                if IA > 0.5:
                    print (IA)
                    if 1 < LMI:
                        print (LMI)
                        if LMI > 0.5:
                            print (LMI)
                        else:   
                            x_1 = np.random.uniform(100,1200)
                            x_2 = np.random.uniform(-5,3)
                            x_3 = np.random.uniform(20,300)
                            x_4 = np.random.uniform(1.1,2.9)
                            params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
                            states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
                            rainfall = dataframe['RAINFALL']
                            potential_evap = dataframe['PE or ETP or Evapotrans (mm)']


                            simulated_flow = gr4j(rainfall, potential_evap, params, states)
                            observed_flow = rainfall
                            True_Y = rainfall
                            Simulated_Y = simulated_flow
                            NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
                            IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
                            LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))    
                    else:   
                        x_1 = np.random.uniform(100,1200)
                        x_2 = np.random.uniform(-5,3)
                        x_3 = np.random.uniform(20,300)
                        x_4 = np.random.uniform(1.1,2.9)
                        params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
                        states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
                        rainfall = dataframe['RAINFALL']
                        potential_evap = dataframe['PE or ETP or Evapotrans (mm)']


                        simulated_flow = gr4j(rainfall, potential_evap, params, states)
                        observed_flow = rainfall
                        True_Y = rainfall
                        Simulated_Y = simulated_flow
                        NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
                        IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
                        LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))        
                
                else:   
                    x_1 = np.random.uniform(100,1200)
                    x_2 = np.random.uniform(-5,3)
                    x_3 = np.random.uniform(20,300)
                    x_4 = np.random.uniform(1.1,2.9)
                    params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
                    states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
                    rainfall = dataframe['RAINFALL']
                    potential_evap = dataframe['PE or ETP or Evapotrans (mm)']


                    simulated_flow = gr4j(rainfall, potential_evap, params, states)
                    observed_flow = rainfall
                    True_Y = rainfall
                    Simulated_Y = simulated_flow
                    NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
                    IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
                    LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))           
            else:   
                x_1 = np.random.uniform(100,1200)
                x_2 = np.random.uniform(-5,3)
                x_3 = np.random.uniform(20,300)
                x_4 = np.random.uniform(1.1,2.9)
                params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
                states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
                rainfall = dataframe['RAINFALL']
                potential_evap = dataframe['PE or ETP or Evapotrans (mm)']


                simulated_flow = gr4j(rainfall, potential_evap, params, states)
                observed_flow = rainfall
                True_Y = rainfall
                Simulated_Y = simulated_flow
                NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
                IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
                LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))                
        else:   
            x_1 = np.random.uniform(100,1200)
            x_2 = np.random.uniform(-5,3)
            x_3 = np.random.uniform(20,300)
            x_4 = np.random.uniform(1.1,2.9)
            params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
            states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
            rainfall = dataframe['RAINFALL']
            potential_evap = dataframe['PE or ETP or Evapotrans (mm)']


            simulated_flow = gr4j(rainfall, potential_evap, params, states)
            observed_flow = rainfall
            True_Y = rainfall
            Simulated_Y = simulated_flow
            NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
            IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
            LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))                    
    else:   
        x_1 = np.random.uniform(100,1200)
        x_2 = np.random.uniform(-5,3)
        x_3 = np.random.uniform(20,300)
        x_4 = np.random.uniform(1.1,2.9)
        params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
        states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
        rainfall = dataframe['RAINFALL']
        potential_evap = dataframe['PE or ETP or Evapotrans (mm)']


        simulated_flow = gr4j(rainfall, potential_evap, params, states)
        observed_flow = rainfall
        True_Y = rainfall
        Simulated_Y = simulated_flow
        NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
        IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
        LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))

What i'm trying to do here is, NSE, LMI and IA have to be from 0.5 to 1...if not, another random values of x_1, x_2, x_3 and x_4 should be generated and NSE, LMI and IA should be recomputed until it reaches 0.5 to 1 (for all NSE, LMI and IA).

I noticed that x_1, x_2, x_3 and x_4 or NSE, LMI and IA do not change (or probably not doing the loops). Anyone who would like to help me revise this code?

Apologies for using a long code, I'm still not used to functions or classes.

CodePudding user response:

Just changing your loop structure, I think this does what you are asking for:

while True:
    x_1 = np.random.uniform(100,1200)
    x_2 = np.random.uniform(-5,3)
    x_3 = np.random.uniform(20,300)
    x_4 = np.random.uniform(1.1,2.9)

    params = { 'X1': x_1, 'X2': x_2, 'X3': x_3 , 'X4': x_4 }
    states = { 'production_store': 0.60 * params['X1'], 'routing_store': 0.70 * params['X3'] } # Production store = S; Routing Store = R
    rainfall = dataframe['RAINFALL']
    potential_evap = dataframe['PE or ETP or Evapotrans (mm)']
    simulated_flow = gr4j(rainfall, potential_evap, params, states)

    True_Y = df_3 ['Flows (m3/s)']
    Simulated_Y = simulated_flow
    NSE = 1 - np.sum((Simulated_Y-True_Y)**2)/np.sum((True_Y-np.mean(True_Y))**2)
    IA = 1 -(np.sum((True_Y-Simulated_Y)**2))/(np.sum((np.abs(Simulated_Y-np.mean(True_Y)) np.abs(True_Y-np.mean(True_Y)))**2))
    LMI = 1-(np.sum(np.abs(Simulated_Y-True_Y))/(np.sum(np.abs(True_Y--np.mean(True_Y)))))

    if 0.5 < NSE < 1 and 0.5 < LMI < 1 and 0.5 < AI < 1:
        # Conditions are met
        print(NSE, LMI, AI)
        break
  • Related