Say I had a dataframe column of ones and zeros, and I wanted to group by clusters of where the value is 1. Using groupby
would ordinarily render 2 groups, a single group of zeros, and a single group of ones.
df = pd.DataFrame([1,1,1,0,0,0,0,1,1,0,0,0,1,0,1,1,1],columns=['clusters'])
print df
clusters
0 1
1 1
2 1
3 0
4 0
5 0
6 0
7 1
8 1
9 0
10 0
11 0
12 1
13 0
14 1
15 1
16 1
for k, g in df.groupby(by=df.clusters):
print k, g
0 clusters
3 0
4 0
5 0
6 0
9 0
10 0
11 0
13 0
1 clusters
0 1
1 1
2 1
7 1
8 1
12 1
14 1
15 1
16 1
So in effect, I need to have a new column with a unique identifier for all clusters of 1: hence we would end up with:
clusters unique
0 1 1
1 1 1
2 1 1
3 0 0
4 0 0
5 0 0
6 0 0
7 1 2
8 1 2
9 0 0
10 0 0
11 0 0
12 1 3
13 0 0
14 1 4
15 1 4
16 1 4
Any help welcome. Thanks.
CodePudding user response:
Let us do ngroup
m = df['clusters'].eq(0)
df['unqiue'] = df.groupby(m.cumsum()[~m]).ngroup() 1
clusters unqiue
0 1 1
1 1 1
2 1 1
3 0 0
4 0 0
5 0 0
6 0 0
7 1 2
8 1 2
9 0 0
10 0 0
11 0 0
12 1 3
13 0 0
14 1 4
15 1 4
16 1 4
CodePudding user response:
Using a mask:
m = df['clusters'].eq(0)
df['unique'] = m.ne(m.shift()).mask(m, False).cumsum().mask(m, 0)
output:
clusters unique
0 1 1
1 1 1
2 1 1
3 0 0
4 0 0
5 0 0
6 0 0
7 1 2
8 1 2
9 0 0
10 0 0
11 0 0
12 1 3
13 0 0
14 1 4
15 1 4
16 1 4