I am using map
function to apply preprocessing on dataset in order to read and extract labels from file paths using tf.data
but it returns the same label for all images
the file path is on the following shape where A is the label
/content/drive/MyDrive/prom02/dataset/train/A0_jpg.rf.292a080422ba984985192f413101af41.jpg
images_ds = tf.data.Dataset.list_files('/content/drive/MyDrive/prom02/dataset/train/*', shuffle=True)
images_ds = images_ds.shuffle(200)
train_size = int(image_count*0.8)
train_ds = images_ds.take(train_size)
test_ds = images_ds.skip(train_size)
len(train_ds),len(test_ds)
def hot_encode(label):
import string
alphabet = list(string.ascii_uppercase)
i=0
while i<26:
if label==alphabet[i]:
label=i
break
i =1
label=tf.one_hot(label,26)
return label
def get_label(file_path):
import os
label=(str(file_path).split('/')[-1][0])
label= hot_encode(label)
return label
def scale(image,label):
return image/255, label
def process_image(file_path):
label = tf.cast(get_label(file_path),tf.float32)
img = tf.io.read_file(file_path) # load the raw data from the file as a string
img = tf.image.decode_jpeg(img)
img = tf.image.resize(img, [320, 320])
return tf.cast(img,tf.float32), label
train_ds = train_ds.map(process_image).map(scale).batch(32).cache().prefetch(tf.data.AUTOTUNE)
test_ds = test_ds.map(process_image).map(scale).batch(32).prefetch(tf.data.AUTOTUNE)
for img,label in train_ds.take(1):
print(label.numpy())
the result is always the encoded tensor of letter T as label while when i use
for img in images_ds.take(2):
print(get_label(img.numpy()))
it returns the true label
CodePudding user response:
I suggest to introduce some modifications, in order to make your code clean do not extract labels inside map function, create list of both path and labels, try this one:
from glob import glob
import string
alphabet = list(string.ascii_uppercase)
idx = range(26)
#create dict alphabet -> idx
dict_alpha = dict(tuple(zip(alphabet, idx)))
paths = glob('/content/drive/MyDrive/prom02/dataset/train/*.jpg')
labels = []
for path in paths:
alpha = path.split("/")[-1][0]
labels.append(dict_alpha[alpha])
#split paths, labels using train_test_split sklearn
train_ds = tf.data.Dataset.from_tensor_slices((paths, labels))
train_ds = train_ds.shuffle(len(paths))
def process_image(file_path, label):
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img)
img = tf.cast(img,tf.float32)
img = tf.image.resize(img, [320, 320], method = 'nearest')
return img, tf.one_hot(label, 26)
batch = 1 #for test
train_ds = train_ds.map(process_image).batch(batch).cache().prefetch(tf.data.AUTOTUNE)
for img, label in train_ds.take(1):
print(label)
Observations:
- You can just replace the scale mapping by img = tf.cast(img, tf.float32) inside process_image
tf.image.resize(img, [320, 320])
by default the resizingmethod is 'bilinear'
which is going change pixel values, for images i prefertf.image.resize(img, [320, 320], method='nearest')
which has no effect on the pixel values, it is based on duplications.