I have the following pandas dataframe and would like to build a new column 'c' which is the summation of column 'b' value and column 'a' previous values. With shifting column 'a' it is possible to do so. However, I would like to know how I can pass the previous values of column 'a' in the apply()
function.
l1 = [1,2,3,4,5]
l2 = [3,2,5,4,6]
df = pd.DataFrame(data=l1, columns=['a'])
df['b'] = l2
df['shifted'] = df['a'].shift(1)
df['c'] = df.apply(lambda row: row['shifted'] row['b'], axis=1)
print(df)
a b shifted c
0 1 3 NaN NaN
1 2 2 1.0 3.0
2 3 5 2.0 7.0
3 4 4 3.0 7.0
4 5 6 4.0 10.0
I appreciate your help.
Edit: this is a dummy example. I need to use the apply function because I'm passing another function to it which uses previous rows of some columns and checks some condition.
CodePudding user response:
First let's make it clear that you do not need apply
for this simple operation, so I'll consider it as a dummy example of a complex function.
Assuming non-duplicate indices, you can generate a shifted Series and reference it in apply
using the name
attribute:
s = df['a'].shift(1)
df['c'] =df.apply(lambda row: row['b'] s[row.name], axis=1)
output:
a b shifted c
0 1 3 NaN NaN
1 2 2 1.0 3.0
2 3 5 2.0 7.0
3 4 4 3.0 7.0
4 5 6 4.0 10.0