Home > database >  Counting values inside pandas groupby aggregate with other functions
Counting values inside pandas groupby aggregate with other functions

Time:08-24

I have been looking for an answer without success (enter image description here

The function used for the output (enter image description here

The output expected:

enter image description here

The output for Col1 and Col2 is a counting. The left side is the value, the right side is the count.

PD: If you know a more efficient way to implement join_non_nan_values function, you are welcome! (As it takes a while for it to run actually..) Just remember that it needs to skips missing values

CodePudding user response:

You can try this:

def f(x):
    c = x.value_counts().sort_index()
    return ";".join(f"{k}:{v}" for (k, v) in c.items())

df["Col2"] = df["Col2"].astype('Int64')
df.groupby("Group")[["Col1", "Col2", "Col3"]].agg({
    "Col1": f,
    "Col2": f,
    "Col3": 'mean'
})

It gives:

         Col1         Col2      Col3
Group                                  
Group_1  A:2;B:1  1:1;2:1;3:2       NaN
Group_2  B:2;C:4      5:3;7:2  3.666667

CodePudding user response:

You can try calling value_counts() inside groupby().apply() and convert the outcome into strings using the str.join() method. To have a Frame (not a Series) returned as an output, use as_index=False parameter in groupby().

def func(g):
    """
    (i)  Count the values in Col1 and Col2 columns by calling value_counts() on each column 
         and convert the output into strings via join() method
    (ii) Calculate mean of Col3
    """
    
    col1 = ';'.join([f'{k}:{v}' for k,v in g['Col1'].value_counts(sort=False).items()])
    col2 = ';'.join([f'{int(k)}:{v}' for k,v in g['Col2'].value_counts(sort=False).items()])
    col3 = g['Col3'].mean()
    return col1, col2, col3

# group by Group and apply func to specific columns
result = df.groupby('Group', as_index=False)[['Col1','Col2','Col3']].apply(func)
result

res

  • Related