I've a dataframe look like this
0 1 2 3
0 {'Emotion': 'female_angry', 'Score': '90.0%'} {'Emotion': 'female_disgust', 'Score': '0.0%'} {'Emotion': 'female_fear', 'Score': '0.0%'}
1 {'Emotion': 'female_angry', 'Score': '0.0%'} {'Emotion': 'female_disgust', 'Score': '0.0%'} {'Emotion': 'female_fear', 'Score': '80.0%'}
2 {'Emotion': 'female_angry', 'Score': '0.1%'} {'Emotion': 'female_disgust', 'Score': '99.0%'} {'Emotion': 'female_fear', 'Score': '4.6%'}
I want to make a separate column based on highest score values.
Like so
Emotion
0 'female_angry'
1 'female_fear'
2 'female_disgust'
I've went through many ref but I can't relate with my problem. Any suggestions?
CodePudding user response:
You can use pandas.apply with axis=1
for iterate over each row:
df_new = df.apply(lambda row: max([tuple(dct.values()) for dct in row],
key= lambda x: x[1]
)[0], axis=1).to_frame(name = 'Emotion')
print(df_new)
Output:
Emotion
0 female_angry
1 female_fear
2 female_disgust
Explanation:
>>> df.apply(lambda row: [tuple(dct.values()) for dct in row], axis=1)
# [('female_angry', '90.0%'), ('female_disgust', '0.0%'), ('female_fear', '0.0%')]
# [('female_angry', '0.0%'), ('female_disgust', '0.0%'), ('female_fear', '80.0%')]
# [('female_angry', '0.1%'), ('female_disgust', '99.0%'), ('female_fear', '4.6%')]
>>> max([('female_angry', '90.0%'), ('female_disgust', '0.0%'), ('female_fear', '0.0%')],
key=lambda x : x[1])
# ('female_angry', '90.0%')
>>> ('female_angry', '90.0%')[0]
# 'female_angry'