This question builds off of this polar histogram function whose value and example I provide here for completeness, since the original site does not have this link.
#' polarHistogram builds many histogram and arranges them around a circle to save space.
#' C. Ladroue, after Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet advance online publication (2012). URL http://dx.doi.org/10.1038/ng.1073.
#' CC licence: http://creativecommons.org/licenses/by-nc-sa/3.0/
#' Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
#' Noncommercial - You may not use this work for commercial purposes.
#' Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.
#'
#' v. 21022012
#'
#' The data frame is expected to have at least four columns: family, item, score and value.
#' The three first columns are categorical variables, the fourth column contains non-negative values.
#' See testPolarHistogram.R for an example.
#' Each bar represents the proportion of scores for one item. Items can be grouped by families.
#' The resulting graph can be busy and might be better off saved as a pdf, with ggsave("myGraph.pdf").
#'
#' @author Christophe Ladroue
#' @param df a data frame containing the data
#' @param binSize width of the bin. Should probably be left as 1, as other parameters are relative to it.
#' @param spaceItem space between bins
#' @param spaceFamily space between families
#' @param innerRadius radius of inner circle
#' @param outerRadius radius of outer circle. Should probably be left as 1, as other parameters are relative to it.
#' @param guides a vector with percentages to use for the white guide lines
#' @param alphaStart offset from 12 o'clock in radians
#' @param circleProportion proportion of the circle to cover
#' @param direction whether the increasing count goes from or to the centre.
#' @param familyLabels logical. Whether to show family names
#' @return a ggplot object
#' @export
#' @examples
#' See testPolarHistogram.R
polarHistogram<-function(
df,
binSize=1,
spaceItem=0.2,
spaceFamily=1.2,
innerRadius=0.3,
outerRadius=1,
guides=c(10,20,40,80),
alphaStart=-0.3,
circleProportion=0.8,
direction="inwards",
familyLabels=FALSE){
require(plyr)
require(ggplot2)
## ordering
df<-arrange(df,family,item,score)
## summing up to one
## TO DO: replace NA by 0 because cumsum doesn't ignore NA's.
df<-ddply(df,.(family,item),transform,value=cumsum(value/(sum(value))))
## getting previous value
df<-ddply(df,.(family,item),transform,previous=c(0,head(value,length(value)-1)))
## family and item indices. There must be a better way to do this
df2<-ddply(df,.(family,item),summarise,indexItem=1)
df2$indexItem<-cumsum(df2$indexItem)
df3<-ddply(df,.(family),summarise,indexFamily=1)
df3$indexFamily<-cumsum(df3$indexFamily)
df<-merge(df,df2,by=c("family",'item'))
df<-merge(df,df3,by="family")
df<-arrange(df,family,item,score)
## define the bins
## linear projection
affine<-switch(direction,
'inwards'= function(y) (outerRadius-innerRadius)*y innerRadius,
'outwards'=function(y) (outerRadius-innerRadius)*(1-y) innerRadius,
stop(paste("Unknown direction")))
df<-within(df,{
xmin<-(indexItem-1)*binSize (indexItem-1)*spaceItem (indexFamily-1)*(spaceFamily-spaceItem)
xmax<-xmin binSize
ymin<-affine(1-previous)
ymax<-affine(1-value)
}
)
## build the guides
guidesDF<-data.frame(
xmin=rep(df$xmin,length(guides)),
y=rep(1-guides/100,1,each=nrow(df)))
guidesDF<-within(guidesDF,{
xend<-xmin binSize
y<-affine(y)
})
## Building the ggplot object
totalLength<-tail(df$xmin binSize spaceFamily,1)/circleProportion-0
## histograms
p<-ggplot(df) geom_rect(
aes(
xmin=xmin,
xmax=xmax,
ymin=ymin,
ymax=ymax,
fill=score)
)
## item labels
readableAngle<-function(x){
angle<-x*(-360/totalLength)-alphaStart*180/pi 90
angle ifelse(sign(cos(angle*pi/180)) sign(sin(angle*pi/180))==-2,180,0)
}
readableJustification<-function(x){
angle<-x*(-360/totalLength)-alphaStart*180/pi 90
ifelse(sign(cos(angle*pi/180)) sign(sin(angle*pi/180))==-2,1,0)
}
dfItemLabels<-ddply(df,.(item),summarize,xmin=xmin[1])
dfItemLabels<-within(dfItemLabels,{
x<-xmin binSize/2
angle<-readableAngle(xmin binSize/2)
hjust<-readableJustification(xmin binSize/2)
})
p<-p geom_text(
aes(
x=x,
label=item,
angle=angle,
hjust=hjust),
y=1.02,
size=3,
vjust=0.5,
data=dfItemLabels)
## guides
p<-p geom_segment(
aes(
x=xmin,
xend=xend,
y=y,
yend=y),
colour="white",
data=guidesDF)
## label for guides
guideLabels<-data.frame(
x=0,
y=affine(1-guides/100),
label=paste(guides,"% ",sep='')
)
p<-p geom_text(
aes(x=x,y=y,label=label),
data=guideLabels,
angle=-alphaStart*180/pi,
hjust=1,
size=4)
## family labels
if(familyLabels){
## familyLabelsDF<-ddply(df,.(family),summarise,x=mean(xmin binSize),angle=mean(xmin binSize)*(-360/totalLength)-alphaStart*180/pi)
familyLabelsDF<-aggregate(xmin~family,data=df,FUN=function(s) mean(s binSize))
familyLabelsDF<-within(familyLabelsDF,{
x<-xmin
angle<-xmin*(-360/totalLength)-alphaStart*180/pi
})
p<-p geom_text(
aes(
x=x,
label=family,
angle=angle),
data=familyLabelsDF,
y=1.2)
}
## ## empty background and remove guide lines, ticks and labels
p<-p theme(
panel.background=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank()
)
## x and y limits
p<-p xlim(0,tail(df$xmin binSize spaceFamily,1)/circleProportion)
p<-p ylim(0,outerRadius 0.2)
## project to polar coordinates
p<-p coord_polar(start=alphaStart)
## nice colour scale
p<-p scale_fill_brewer(palette='Set1',type='qual')
p
}
And its usage is:
library(reshape2)
set.seed(42)
nFamily<-20
nItemPerFamily<-sample(1:6,nFamily,replace=TRUE)
nValues<-3
randomWord<-function(n,nLetters=5)
replicate(n,paste(sample(letters,nLetters,replace=TRUE),sep='',collapse=''))
df<-data.frame(
family=rep(randomWord(nFamily),nItemPerFamily),
item=randomWord(sum(nItemPerFamily),3))
df<-cbind(df,as.data.frame(matrix(runif(nrow(df)*nValues),nrow=nrow(df),ncol=nValues)))
df<-melt(df,c("family","item"),variable.name="score") # from wide to long
print(head(df))
polarHistogram(df,familyLabel=FALSE)
which gives us the following figure:
My question is however, somewhat different, even though the display I want is somewhat similar. I have the following dataset.
arr <- matrix(runif(15*30), nrow = 30)
dff <- as.data.frame(arr)
names(dff) <- paste("Species ", 1:15, sep = "")
As we can see, this is a matrix of proportions of each Species in 30 locations. I want to display this figure. What I am wanting to do is to make a 270-degree circular plot like in the plot above, with the Species in the labels (where the 10%, 20%, 40%, 80%, etc is except that these would be regularly spaced), the 30 locations in the circular axis, and there being a radial cell which is colored proportional to the abundance using the RColorBrewer's . Any suggestions on how to do this?
Let me know if the question needs more clarification.
CodePudding user response:
What you are describing is a polar heat map. We can do this ourselves in ggplot
using geom_tile
and coord_polar
, though we need a little data reshaping first:
library(tidyverse)
dff %>%
mutate(Site = seq_along(`Species 1`)) %>%
pivot_longer(-Site, names_to = 'Species', values_to = 'Abundance') %>%
mutate(yval = match(Species, colnames(dff))) %>%
ggplot(aes(Site, yval, fill = Abundance))
geom_tile()
geom_text(aes(label = colnames(dff)), hjust = 1.1, size = 3,
data = data.frame(Site = 40.5, yval = 1:15, Abundance = 1))
coord_polar()
scale_y_continuous(limits = c(-5, 15.5))
scale_x_continuous(limits = c(0.5, 40.5), breaks = 1:30)
scale_fill_distiller(direction = 1, limits = 0:1, labels = scales::percent)
theme_void(base_size = 16)
theme(axis.text.x = element_text(size = 12),
axis.title.x = element_text())