Given the following DataFrame. How do I add a new column showing True
for the rest of the day when two consecutive "y"
are seen in a single day in the val
column (else False
).
- Each day resets the logic.
This is close but the True
should be for each row in this day after condition is seen.
Code
df_so = pd.DataFrame(
{
"val": list("yynnnyyynn")
},
index=pd.date_range(start="1/1/2018", periods=10, freq="6h"),
)
val
2018-01-01 00:00:00 y
2018-01-01 06:00:00 y
2018-01-01 12:00:00 n
2018-01-01 18:00:00 n
2018-01-02 00:00:00 n
2018-01-02 06:00:00 y
2018-01-02 12:00:00 y
2018-01-02 18:00:00 y
2018-01-03 00:00:00 n
2018-01-03 06:00:00 n
Desired output
val out
2018-01-01 00:00:00 y False
2018-01-01 06:00:00 y False
2018-01-01 12:00:00 n True
2018-01-01 18:00:00 n True
2018-01-02 00:00:00 n False
2018-01-02 06:00:00 y False
2018-01-02 12:00:00 y False
2018-01-02 18:00:00 y True
2018-01-03 00:00:00 n False
2018-01-03 06:00:00 n False
CodePudding user response:
You can use cummax
to check if the condition holds at some point in the past:
target = 2
df_so['out'] = (df_so['val'].eq('y')
.groupby(df_so.index.normalize())
.transform(lambda x: x.rolling(target).sum().shift().eq(target).cummax())
)
Output:
val out
2018-01-01 00:00:00 y False
2018-01-01 06:00:00 y False
2018-01-01 12:00:00 n True
2018-01-01 18:00:00 n True
2018-01-02 00:00:00 n False
2018-01-02 06:00:00 y False
2018-01-02 12:00:00 y False
2018-01-02 18:00:00 y True
2018-01-03 00:00:00 n False
2018-01-03 06:00:00 n False