Home > database >  How to join dataframe on itself creating all combinations inside groups
How to join dataframe on itself creating all combinations inside groups

Time:09-19

Some mock data:

pd.DataFrame({'date': {0: Timestamp('2021-08-01 '),
  1: Timestamp('2022-08-01 '),
  2: Timestamp('2021-08-02 '),
  3: Timestamp('2021-08-01 '),
  4: Timestamp('2022-08-01 '),
  5: Timestamp('2022-08-01 '),
  6: Timestamp('2022-08-01 ')                   },
 'product_nr': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7},
 'Category': {0:  'Cars', 1: 'Cars', 2: 'Cats', 3: 'Dogs', 4: 'Dogs', 5: 'Cats', 6 :'Cats'},
 'price': {0: '34',
  1: '24',
  2: '244',
  3: '284',
  4: '274',
  5: '354',
  6 : '250'}} )

How do I do an inner join on the same dataframe with a specific condition? I want to compare prices between rows that are the same category. Desired output:

pd.DataFrame({
 'product_nr': {0: 1,  1: 3,  2: 5, 3: 7, 4:7},
 'Category': {0:  'Cars',  1: 'Cats', 2: 'Dogs', 3:'Cats', 4:'Cats'},
 'price': {0: '34',
  1: '244',
  2: '274',
  3: '250',
  4: '250'},
 'product_to_be_compared' : {0: 2,  1: 6,  2: 4, 3:3 , 4:6}
} )

I.e., I want to do an inner join / cross join (not sure what's most suitable). I have a large dataframe and I want to pair rows together if they are the same category and date. Ideally, I would prefer to remove duplicated pairs, meaning my desired output would be 4 rows.

CodePudding user response:

From your questions I know you're familiar with PySpark. This is how it could be done using PySpark dataframes. Even though it uses external itertools library, it should perform well, because that part resides inside a pandas_udf which is vectorized for performance.

Input df:

import pandas as pd

pdf = pd.DataFrame({
    'date': {
        0: pd.Timestamp('2021-08-01'),
        1: pd.Timestamp('2021-08-01'),
        2: pd.Timestamp('2021-08-02'),
        3: pd.Timestamp('2021-08-03'),
        4: pd.Timestamp('2021-08-03'),
        5: pd.Timestamp('2021-08-02'),
        6: pd.Timestamp('2021-08-02')
    },
    'product_nr': {0: '1', 1: '2', 2: '3', 3: '4', 4: '5', 5: '6', 6: '7'},
    'Category': {0:  'Cars', 1: 'Cars', 2: 'Cats', 3: 'Dogs', 4: 'Dogs', 5: 'Cats', 6 :'Cats'},
    'price': {
        0: '34',
        1: '24',
        2: '244',
        3: '284',
        4: '274',
        5: '354',
        6 : '250'
    }
})
df = spark.createDataFrame(pdf)

Script:

from pyspark.sql import functions as F
from itertools import combinations

@F.pandas_udf('array<array<string>>')
def arr_combinations(c: pd.Series) -> pd.Series:
    return c.apply(lambda x: list(combinations(x, 2)))

df2 = df.groupBy('Category', 'date').agg(F.collect_list('product_nr').alias('ps'))
df2 = df2.withColumn('ps', F.explode(arr_combinations('ps')))
df2 = df2.select(
    'Category', 'date',
    F.col('ps')[0].alias('product_nr'),
    F.col('ps')[1].alias('product_to_be_compared')
)
df3 = df.join(df2, ['product_nr', 'Category', 'date'])

df3.show()
#  ---------- -------- ------------------- ----- ---------------------- 
# |product_nr|Category|               date|price|product_to_be_compared|
#  ---------- -------- ------------------- ----- ---------------------- 
# |         3|    Cats|2021-08-02 00:00:00|  244|                     7|
# |         3|    Cats|2021-08-02 00:00:00|  244|                     6|
# |         1|    Cars|2021-08-01 00:00:00|   34|                     2|
# |         6|    Cats|2021-08-02 00:00:00|  354|                     7|
# |         4|    Dogs|2021-08-03 00:00:00|  284|                     5|
#  ---------- -------- ------------------- ----- ---------------------- 

If you want to compare prices directly in this table, use the following:

from pyspark.sql import functions as F
from itertools import combinations

@F.pandas_udf('array<array<array<string>>>')
def arr_combinations(c: pd.Series) -> pd.Series:
    return c.apply(lambda x: list(combinations(x, 2)))

df2 = df.groupBy('Category', 'date').agg(F.collect_list(F.array('product_nr', 'price')).alias('ps'))
df2 = df2.withColumn('ps', F.explode(arr_combinations('ps')))
df2 = df2.select(
    F.col('ps')[0][0].alias('product_nr'),
    'Category',
    'date',
    F.col('ps')[0][1].alias('product_price'),
    F.col('ps')[1][0].alias('product_to_be_compared'),
    F.col('ps')[1][1].alias('product_to_be_compared_price'),
)
df2.show()
#  ---------- -------- ------------------- ------------- ---------------------- ---------------------------- 
# |product_nr|Category|               date|product_price|product_to_be_compared|product_to_be_compared_price|
#  ---------- -------- ------------------- ------------- ---------------------- ---------------------------- 
# |         1|    Cars|2021-08-01 00:00:00|           34|                     2|                          24|
# |         3|    Cats|2021-08-02 00:00:00|          244|                     6|                         354|
# |         3|    Cats|2021-08-02 00:00:00|          244|                     7|                         250|
# |         6|    Cats|2021-08-02 00:00:00|          354|                     7|                         250|
# |         4|    Dogs|2021-08-03 00:00:00|          284|                     5|                         274|
#  ---------- -------- ------------------- ------------- ---------------------- ---------------------------- 

CodePudding user response:

Assuming that you have two products per category, you can invert the values per group:

df['product_to_be_compared'] = (df.groupby('Category')['product_nr']
                                  .transform(lambda s: s[::-1].values)
                               )

output:

        date  product_nr Category price  product_to_be_compared
0 2021-08-01           1     Cars    34                       2
1 2022-08-01           2     Cars    24                       1
2 2021-08-02           3     Cats   244                       6
3 2021-08-01           4     Dogs   284                       5
4 2022-08-01           5     Dogs   274                       4
5 2022-08-01           6     Cats   354                       3

To swap several columns:

df[['prod2', 'price2']] = (df.groupby('Category')['product_nr', 'price']
                             .transform(lambda s: s[::-1].values)
                           )

output:

        date  product_nr Category price  prod2 price2
0 2021-08-01           1     Cars    34      2     24
1 2022-08-01           2     Cars    24      1     34
2 2021-08-02           3     Cats   244      6    354
3 2021-08-01           4     Dogs   284      5    274
4 2022-08-01           5     Dogs   274      4    284
5 2022-08-01           6     Cats   354      3    244

update: linking to another value in the same group while dropping duplicates

m = df.groupby('Category').cumcount().eq(1)
mapper = df[m].set_index('Category')['product_nr']
df[~m].assign(product_to_be_compared=lambda d: d['Category'].map(mapper))

output:

        date  product_nr Category price  product_to_be_compared
0 2021-08-01           1     Cars    34                       2
2 2021-08-02           3     Cats   244                       6
3 2021-08-01           4     Dogs   284                       5
6 2022-08-02           7     Cats   250                       6
  • Related