Home > database >  How to remove the numbers, vertical scroll and expand (width & height) of all cells of a Shiny DT?
How to remove the numbers, vertical scroll and expand (width & height) of all cells of a Shiny DT?

Time:10-10

I'm trying to edit my datatable to put values ​​as inputs. However, I would like to remove the numbers and scrolls from each cell, something similar to Excel/ SPSS cells. The problem is in the following image:

enter image description here

I would like all cells to look approximately like this as if they were Excel/ SPSS cells:

enter image description here

Table code:

library(shiny)
library(shinydashboard)
library(DT)
library(tidyverse)
library(shinyjs)

header <- dashboardHeader(title = "Dashboard", titleWidth = 300)

sidebar <- dashboardSidebar(
  
  width = 300, 
  
  sidebarMenu(
    
    menuItem(
      text = "Menu 1", 
      tabName = "menu1", 
      icon = icon("chart-line")
    )
    
  )
  
)

body <- dashboardBody(
  
  HTML(
  "<head>
  <script>
  
  $(function() {
    setTimeout(function() {
      $('.dt-rigth').dblclick();
    }, 1000);
  });
  
  </script>
  </head>"  
  ),
  
  tabItems(
    
    tabItem(
      
      tabName = "menu1", 
      
      titlePanel(
        
        title = HTML(
          "<text style='background-color:#008cba; color:#f2f2f2;'>Analysis</text>"
        )
        
      ), 
      
      fluidPage(
        
        column(
          
          id = "menusss1",
          width = 12, 
          
          column(
            
            id = "correl", 
            width = 1, 
            
            DT::DTOutput("my_datatable"),
            actionButton("go", label = "Plot Data")
            
          ), 
          
          column(
            
            id = "correlplot", 
            width = 6, 
            
            plotOutput("my_plot")
            
          )
          
        )
        
      )
      
    )
    
  )
  
)

ui <- dashboardPage(header, sidebar, body)

server <- function(input, output) {
  
  #initialize a blank dataframe
  v <- reactiveValues(data = { 
    data.frame(x = numeric(0) ,y = numeric(0)) %>% 
      add_row(x = rep(0, 30) ,y = rep(0, 30))
  })
  
  #output the datatable based on the dataframe (and make it editable)
  output$my_datatable <- DT::renderDataTable({
    
    js <- "table.on('click', 'td', function() { 
      $(this).dblclick();
    });"
    
    DT::datatable(
      data = v$data, 
      editable = TRUE, 
      rownames = FALSE, 
      selection = list(mode = 'none'),
      callback = JS(js),
      options = list(
        searching = FALSE, 
        paging = FALSE, 
        ordering = FALSE, 
        info = FALSE,
        autoWidth = TRUE
      ))
    
  })
  
  #when there is any edit to a cell, write that edit to the initial dataframe
  #check to make sure it's positive, if not convert
  observeEvent(input$my_datatable_cell_edit, {
    #get values
    info = input$my_datatable_cell_edit
    i = as.numeric(info$row)
    j = as.numeric(info$col)
    k = as.numeric(info$value)
    if(k < 0){ #convert to positive if negative
      k <- k * -1
    }
    
    #write values to reactive
    v$data[i,j] <- k
  })
  
  #render plot
  output$my_plot <- renderPlot({
    req(input$go) #require the input button to be non-0 (ie: don't load the plot when the app first loads)
    isolate(v$data) %>%  #don't react to any changes in the data
      ggplot(aes(x,y))  
      geom_point()  
      geom_smooth(method = "lm")
  })
  
}

# Run the application 
shinyApp(ui = ui, server = server)

EDIT

I created a js object to click just once and enter the values. Note that after a double click, the cell is approximately the way I would like. I tried to add a setTimeout(), but to no avail. I just wanted it to fill a bigger space and not have scroll. This way:

enter image description here

As if it were Excel/ SPSS or similar:

enter image description here

CodePudding user response:

Firstly, to remove up/down arrows when cell editing and the (blue) inner border that appears when double clicking on the cell, custom css should be added in the ui as follows:

tags$style(HTML("table.dataTable tr td input:focus {outline: none; background: none; border:none;};
            table.dataTable tr td input[type=number]::-webkit-inner-spin-button, 
             input[type=number]::-webkit-outer-spin-button { 
               -webkit-appearance: none; 
               margin: 0; 
               }"))

Then, to remove the numbers you can simply initialise the data frame with NAs instead of zeros:

v <- reactiveValues(data = { 
    data.frame(x = NA ,y = NA) %>% 
      add_row(x = rep(NA, 30) ,y = rep(NA, 30))
  })

To add a green border around cells when the user is editing the values in them the following JS code should be added:

callback = JS("$('table').on('dblclick', 'td', function() {
                $(this).css('border', '1px solid green');
                });")

Putting all that together:

library(shiny)
library(shinydashboard)
library(DT)
library(tidyverse)

header <- dashboardHeader(title = "Dashboard", titleWidth = 300)

sidebar <- dashboardSidebar(
  width = 300, 
  sidebarMenu(
    menuItem(
      text = "Menu 1", 
      tabName = "menuid1", 
      icon = icon("chart-line")))
)

body <- dashboardBody(
  tabItems(
    tabItem(
      tabName = "menuid1", 
      titlePanel(
        title = HTML("<text style='background-color:#008cba; color:#f2f2f2;'>Analysis</text>")),
      fluidPage(
        tags$style(HTML("table.dataTable tr td input:focus {outline: none; background: none; border:none;};
            table.dataTable tr td input[type=number]::-webkit-inner-spin-button, 
             input[type=number]::-webkit-outer-spin-button { 
               -webkit-appearance: none; 
               margin: 0;
               };")),
        column(
          id = "meuprimeiromenuid1",
          width = 12, 
          column(
            id = "correl", 
            width = 1,
            DT::DTOutput("my_datatable"),
            actionButton("go", label = "Plot Data")),
          column(
            id = "correlplot", 
            width = 6, 
            plotOutput("my_plot"))
        ))
    ))
)

ui <- dashboardPage(header, sidebar, body)

server <- function(input, output) {
  
  #initialize a blank dataframe
  v <- reactiveValues(data = { 
    data.frame(x = NA ,y = NA) %>% 
      add_row(x = rep(NA, 30) ,y = rep(NA, 30))
  })

  callback = JS("$('table').on('dblclick', 'td', function() {
            $(this).css('border', '1px solid green');
            });")

  #output the datatable based on the dataframe (and make it editable)
  output$my_datatable <- DT::renderDataTable({
    DT::datatable(
      data = v$data,
      editable = TRUE, 
      rownames = FALSE, 
      selection = list(mode = 'none'),
      callback = callback,
      options = list(
        searching = FALSE, 
        paging = FALSE, 
        ordering = FALSE, 
        info = FALSE,
        autoWidth = TRUE
      ))
    
  })
  
  #when there is any edit to a cell, write that edit to the initial dataframe
  #check to make sure it's positive, if not convert
  observeEvent(input$my_datatable_cell_edit, {
    #get values
    info = input$my_datatable_cell_edit
    i = as.numeric(info$row)
    j = as.numeric(info$col) 1
    k = as.numeric(info$value)
    if (!is.na(k) & k < 0) { #convert to positive if negative
      k <- k * -1
    }
    
    #write values to reactive
    v$data[i,j] <- k
  })
  
  #render plot
  output$my_plot <- renderPlot({
    # browser()
    req(input$go) #require the input button to be non-0 (ie: don't load the plot when the app first loads)
    isolate(v$data) %>%  #don't react to any changes in the data
      drop_na() %>% 
      ggplot(aes(x,y))  
      geom_point()  
      geom_smooth(method = "lm")
  })
  
}

# Run the application 
shinyApp(ui = ui, server = server)

Also, two additional notes here: (1) In the cell edit observe event, the variable regarding columns (j) should be increased by 1 given that column count begins at 0 and rownames are disabled. (2) Given that now the data frame has its values initialised with NA adding appropriate checks for cell editing and when creating/rendering the plot might be required. For example, I've added a command to drop any row that contains value(s) that are NA before creating the plot (drop_na).

  • Related