Where f(0) = 0, f(1) = 1, f(2) = 2. I know there is a way to solve Fibonacci using matrix explanation.
And the solution is(credit: geeksforgeeks)
#include <stdio.h>
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
int fib(int n)
{
int F[2][2] = {{1,1},{1,0}};
if (n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
void power(int F[2][2], int n)
{
if( n == 0 || n == 1)
return;
int M[2][2] = {{1,1},{1,0}};
power(F, n/2);
multiply(F, F);
if (n%2 != 0)
multiply(F, M);
}
void multiply(int F[2][2], int M[2][2])
{
int x = F[0][0]*M[0][0] F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
int main()
{
int n = 9;
printf("%d", fib(9));
getchar();
return 0;
}
But what will be the matrix for this (F(n) = F(n-3) F(n -2)) equation?
CodePudding user response:
As far as I understand, you need a matrix to calculate generalized Tribonacci values of described kind in log(n) time.
Writing dependences we can deduce such equations
[Fn 1] [0 Fn-1 Fn-2] [0 1 1] [Fn]
[Fn ] = [Fn 0 0 ] = [1 0 0] [Fn-1]
[Fn-1] [0 Fn-1 0 ] [0 1 0] [Fn-2]
^
matrix
So you can use matrix above in corresponding power with [2,1,0]
column
CodePudding user response:
You can compute this in log(n) time (arithmetic operations) without matrices, by noting that F(n) is the constant coefficient of x^n(x^2 2x) mod x^3-x-1.
It pretty much works the same as the matrix solution, except these degree-2 polynomials are a more compact representation of the particular matrices that appear in the 3x3 matrix solution, and their product can be calculated easily using 9 multiplications instead of 23-27 multiplications (depending on exactly how you're doing the 3x3 matrix multiply).
#include <stdint.h>
#include <stdio.h>
typedef struct poly_s {
int64_t x0, x1, x2;
} poly_s;
poly_s mul(poly_s a, poly_s b) {
return (poly_s){
a.x0*b.x0 a.x2*b.x1 a.x1*b.x2,
a.x1*b.x0 a.x0*b.x1 a.x2*b.x2 a.x2*b.x1 a.x1*b.x2,
a.x2*b.x0 a.x1*b.x1 a.x0*b.x2 a.x2*b.x2
};
}
poly_s polypow(poly_s x, int n) {
poly_s r = {1, 0, 0};
while(n) {
if (n & 1) r = mul(r, x);
x = mul(x, x);
n >>= 1;
}
return r;
}
int main() {
for (int i = 0; i < 30; i ) {
printf("%d: %ld\n", i, mul((poly_s){0, 2, 1}, polypow((poly_s){0, 1, 0}, i)).x0);
}
}
Output:
0: 0
1: 1
2: 2
3: 1
4: 3
5: 3
6: 4
7: 6
8: 7
9: 10
10: 13
11: 17
12: 23
13: 30
14: 40
15: 53
16: 70
17: 93
18: 123
19: 163
20: 216
21: 286
22: 379
23: 502
24: 665
25: 881
26: 1167
27: 1546
28: 2048
29: 2713