I'm using the mtcars
dataset.
structure(list(index = 1:32, car = c("Mazda RX4", "Mazda RX4 Wag",
"Datsun 710", "Hornet 4 Drive", "Hornet Sportabout", "Valiant",
"Duster 360", "Merc 240D", "Merc 230", "Merc 280", "Merc 280C",
"Merc 450SE", "Merc 450SL", "Merc 450SLC", "Cadillac Fleetwood",
"Lincoln Continental", "Chrysler Imperial", "Fiat 128", "Honda Civic",
"Toyota Corolla", "Toyota Corona", "Dodge Challenger", "AMC Javelin",
"Camaro Z28", "Pontiac Firebird", "Fiat X1-9", "Porsche 914-2",
"Lotus Europa", "Ford Pantera L", "Ferrari Dino", "Maserati Bora",
"Volvo 142E"), mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3,
24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4,
30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8,
19.7, 15, 21.4), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8,
8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4),
disp = c(160, 160, 108, 258, 360, 225, 360, 146.7, 140.8,
167.6, 167.6, 275.8, 275.8, 275.8, 472, 460, 440, 78.7, 75.7,
71.1, 120.1, 318, 304, 350, 400, 79, 120.3, 95.1, 351, 145,
301, 121), hp = c(110, 110, 93, 110, 175, 105, 245, 62, 95,
123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150,
150, 245, 175, 66, 91, 113, 264, 175, 335, 109), drat = c(3.9,
3.9, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,
3.07, 3.07, 3.07, 2.93, 3, 3.23, 4.08, 4.93, 4.22, 3.7, 2.76,
3.15, 3.73, 3.08, 4.08, 4.43, 3.77, 4.22, 3.62, 3.54, 4.11
), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19,
3.15, 3.44, 3.44, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 2.2,
1.615, 1.835, 2.465, 3.52, 3.435, 3.84, 3.845, 1.935, 2.14,
1.513, 3.17, 2.77, 3.57, 2.78), qsec = c(16.46, 17.02, 18.61,
19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3, 18.9, 17.4, 17.6,
18, 17.98, 17.82, 17.42, 19.47, 18.52, 19.9, 20.01, 16.87,
17.3, 15.41, 17.05, 18.9, 16.7, 16.9, 14.5, 15.5, 14.6, 18.6
), vs = c(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1), am = c(1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), gear = c(4, 4, 4, 3,
3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3,
3, 3, 4, 5, 5, 5, 5, 5, 4), carb = c(4, 4, 1, 1, 2, 1, 4,
2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1,
2, 2, 4, 6, 8, 2)), row.names = c(NA, -32L), class = c("tbl_df",
"tbl", "data.frame"))
This version of the mtcars
dataset has the car variable turned into it's own column, which is why I shared it as a dput
, since it's a little different than what you could load as mtcars <- mtcars
I'm creating a ggplot
graph for each car. This is definitely not a very interesting set of graphs since it's only a single point on an x
and y
axis for each car - but I'm trying to work out the code and apply it to a different dataset.
for (i in 1:length(car)) {
mtcars %>%
filter(car == car[i]) %>%
ggplot(aes(x = wt, y = mpg)) geom_point() -> g
print(g)
}
This works fine - but I'm trying to add a subtile that is customized. The code below doesn't work. I was reading about c-style commands using sprintf
which I'm not so familiar with. What am I doing wrong? I've tried this a bunch of ways.
for (i in 1:length(car)) {
mtcars %>%
filter(car == car[i]) %>%
ggplot(aes(x = wt, y = mpg)) geom_point()
labs(subtitle = sprintf(as.character(car)) -> g
print(g)
}
CodePudding user response:
We may need the fmt
in sprintf
. Here, the car[i]
is already character string, thus we use %s
for interpolation
for (i in 1:length(car)) {
mtcars %>%
filter(car == car[i]) %>%
ggplot(aes(x = wt, y = mpg)) geom_point()
labs(subtitle = sprintf('%s', car[i])) -> g
print(g)
}