I have the following dataframe
:
gp_columns = {
'name': ['companyA', 'companyB'],
'firm_ID' : [1, 2],
'timestamp_one' : ['2016-04-01', '2017-09-01']
}
fund_columns = {
'firm_ID': [1, 1, 2, 2, 2],
'department_ID' : [10, 11, 20, 21, 22],
'timestamp_mult' : ['2015-01-01', '2016-03-01', '2016-10-01', '2017-02-01', '2018-11-01'],
'number' : [400, 500, 1000, 3000, 4000]
}
gp_df = pd.DataFrame(gp_columns)
fund_df = pd.DataFrame(fund_columns)
gp_df['timestamp_one'] = pd.to_datetime(gp_df['timestamp_one'])
fund_df['timestamp_mult'] = pd.to_datetime(fund_df['timestamp_mult'])
merged_df = gp_df.merge(fund_df)
merged_df
merged_df_v1 = merged_df.copy()
merged_df_v1['incidence_num'] = merged_df.groupby('firm_ID')['department_ID']\
.transform('cumcount')
merged_df_v1['incidence_num'] = merged_df_v1['incidence_num'] 1
merged_df_v1['time_delta'] = merged_df_v1['timestamp_mult'] - merged_df_v1['timestamp_one']
merged_wide = pd.pivot(merged_df_v1, index = ['name','firm_ID', 'timestamp_one'], \
columns = 'incidence_num', \
values = ['department_ID', 'time_delta', 'timestamp_mult', 'number'])
merged_wide.reset_index()
My question is how i get a column that calculates the minimum time delta (so closest to 0). Note that the time delta can be negative or positive, so .abs()
does not work for me here.
I want a dataframe
with this particular output:
CodePudding user response:
You can stack
(which removes NaTs) and groupby.first
after sorting the rows by absolute value (with the key
parameter of sort_values
):
df = merged_wide.reset_index()
df['time_delta_min'] = (df['time_delta'].stack()
.sort_values(key=abs)
.groupby(level=0).first()
)
output:
name firm_ID timestamp_one department_ID \
incidence_num 1 2 3
0 companyA 1 2016-04-01 10 11 NaN
1 companyB 2 2017-09-01 20 21 22
time_delta timestamp_mult \
incidence_num 1 2 3 1 2
0 -456 days -31 days NaT 2015-01-01 2016-03-01
1 -335 days -212 days 426 days 2016-10-01 2017-02-01
number time_delta_min
incidence_num 3 1 2 3
0 NaT 400 500 NaN -31 days
1 2018-11-01 1000 3000 4000 -212 days
CodePudding user response:
Use lookup
with indices of absolute values by DataFrame.idxmin
:
idx, cols = pd.factorize(df['time_delta'].abs().idxmin(axis=1))
df['time_delta_min'] = (df['time_delta'].reindex(cols, axis=1).to_numpy()
[np.arange(len(df)), idx])
print (df)