I have a txt file like this (separated by tab):
Variance | Mean |
---|---|
0.001435955236 | -0.001117 |
0.002473570225 | 0.003123 |
0.002334629124 | -0.003471 |
...and so on.
I load it using pandas.read_table() and the result is a dataframe like this:
Variance | Mean | |
---|---|---|
0 | 0.001436 | -0.001117 |
1 | 0.002474 | 0.003123 |
2 | 0.002335 | -0.003471 |
Why it cuts the decimal places in Variance column? I need those values to be like in the original file.
The file can be found here: https://github.com/jarsonX/Temp_files
My code:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df_assets = pd.read_table('assets.txt')
df_assets.head(10)
CodePudding user response:
Pandas does not actually "cut" the decimal place, it just rounds when printing. To print with display precision, use
with pd.option_context('display.precision', 10):
print(df_assets)