Home > database >  how to parse strings and apply them to dataframe
how to parse strings and apply them to dataframe

Time:11-25

I have an excel table that use as reference for logical operators so I can join them later to apply a logical string to pandas dataframe.

enter image description here

dataframe

   GOOD  BAD UGLY
0   101   60    0
1    22   61    0
2   103   62  NaN
3   104   63    0

I can get values from the excel sheet and append them into list. But How can parse this logical formulas to df?

import pandas as pd
import openpyxl

def create_dataframe():
    df = pd.DataFrame({'GOOD': [101,22,103,104],
                      'BAD': [60,61,62,63],
                      'UGLY': [0,0,'NaN',0],

                      })
    print(df)
    read_filter = pd.read_excel('test.xlsx')
    print(read_filter)
    formulas = []
    logicals = ['>','<']
    for i, filter_col in enumerate(read_filter['col1']):
        if read_filter['Logic'][i] in logicals:
            formula =  f"df['{filter_col}'][{i}]"   read_filter['Logic'][i]   str(read_filter['value'][i])
            formulas.append(formula)
        else:
            formula =  f"{read_filter['Logic'][i]}(df['{filter_col}'])"
            formulas.append(formula)
#      
    print(formulas)
    #df['Result'] = df.apply(lambda x: eval(formulas) , axis=1)
    return df

formulas ----

["df['GOOD'][0]>100", "df['BAD'][1]<50", "pd.isna(df['UGLY'])"]

The expected result :

  GOOD  BAD UGLY  Result
0   101   60    0   False
1    22   61    0   False
2   103   62        True    
3   104   63    0   False

CodePudding user response:

You can create the full condition like this:

>>> ' & '.join(f"({f})" for f in formulas)
"(df['GOOD'][0]>100) & (df['BAD'][1]>50) & (pd.isna(df['UGLY']))"

Each expression should be put in parentheses. Otherwise a > b & c > d will be parsed as a > (b & c) > d, not (a > b) & (c > d).

Then eval it:

>>> import pandas as pd
>>> df = pd.DataFrame({'GOOD': [101,22,103,104], 'BAD': [60,61,62,63], 'UGLY': [0,0,float('nan'),0]})
>>> formulas = ["df['GOOD'][0]>100", "df['BAD'][1]<50", "pd.isna(df['UGLY'])"]
>>> eval(' & '.join(f"({f})" for f in formulas), {'df': df, 'pd': pd})
0    False
1    False
2     True
3    False
Name: UGLY, dtype: bool

Then you can create a column with this result:

>>> df.assign(Result=eval(' & '.join(f"({f})" for f in formulas), {'df': df, 'pd': pd}))
   GOOD  BAD  UGLY  Result
0   101   60   0.0   False
1    22   61   0.0   False
2   103   62   NaN    True
3   104   63   0.0   False
  • Related