Be the following python pandas DataFrame:
| date | column_1 | column_2 |
| ---------- | -------- | -------- |
| 2022-02-01 | val | val2 |
| 2022-02-03 | val1 | val |
| 2022-02-01 | val | val3 |
| 2022-02-04 | val2 | val |
| 2022-02-27 | val2 | val4 |
I want to create a new DataFrame, where each row has a value between the minimum and maximum date
value from the original DataFrame. The counter column
contains a row counter for that date.
| date | counter |
| ---------- | -------- |
| 2022-02-01 | 2 |
| 2022-02-02 | 0 |
| 2022-02-03 | 1 |
| 2022-02-04 | 1 |
| 2022-02-05 | 0 |
...
| 2022-02-26 | 0 |
| 2022-02-27 | 1 |
CodePudding user response:
Count dates first & remove duplicates using Drop duplicates. Fill intermidiate dates with Pandas has asfreq function for datetimeIndex, this is basically just a thin, but convenient wrapper around reindex() which generates a date_range and calls reindex.
df['counts'] = df['date'].map(df['date'].value_counts())
df = df.drop_duplicates(subset='date', keep="first")
df.date = pd.to_datetime(df.date)
df = df.set_index('date').asfreq('D').reset_index()
df = df.fillna(0)
print(df)
Gives #
date counts
0 2022-02-01 2.0
1 2022-02-02 0.0
2 2022-02-03 1.0
3 2022-02-04 1.0
4 2022-02-05 0.0
5 2022-02-06 0.0
6 2022-02-07 0.0
7 2022-02-08 0.0
8 2022-02-09 0.0
9 2022-02-10 0.0
10 2022-02-11 0.0
11 2022-02-12 0.0
12 2022-02-13 0.0
13 2022-02-14 0.0
14 2022-02-15 0.0
15 2022-02-16 0.0
16 2022-02-17 0.0
17 2022-02-18 0.0
18 2022-02-19 0.0
19 2022-02-20 0.0
20 2022-02-21 0.0
21 2022-02-22 0.0
22 2022-02-23 0.0
23 2022-02-24 0.0
24 2022-02-25 0.0
25 2022-02-26 0.0
CodePudding user response:
Many ways to do this. Here is mine. Probably not optimal, but at least I am not iterating rows, nor using .apply
, which are both sure recipes to create slow solutions
import pandas as pd
import datetime
# A minimal example (you should provide such an example next time)
df=pd.DataFrame({'date':pd.to_datetime(['2022-02-01', '2022-02-03', '2022-02-01', '2022-02-04', '2022-02-27']), 'c1':['val','val1','val','val2','val2'], 'c2':range(5)})
# A delta of 1 day, to create list of date
dt=datetime.timedelta(days=1)
# Result dataframe, with a count of 0 for now
res=pd.DataFrame({'date':df.date.min() dt*np.arange((df.date.max()-df.date.min()).days 1), 'count':0})
# Cound dates
countDates=df[['date', 'c1']].groupby('date').agg('count')
# Merge the counted dates with the target array, filling missing values with 0
res['count']=res.merge(countDates, on='date', how='left').fillna(0)['c1']