Failed try:
I want it to be
bmw 320i 2 plymouth reliant 1 honda civic 3
CodePudding user response:
Since the condition is not mentioned, the best solution I can provide is to use mask.
It replaces values where the condition is True.
CodePudding user response:
I want it to be bmw 320i 2 plymouth reliant 1 honda civic 3
You can fill the NaN in the first column with values from a series like this:
df = pd.DataFrame([[np.nan, "bmw 320i"],
[np.nan, "plymouth reliant"],
[np.nan, "honda civic"]],
columns=("origin", "car name"))
df2 = pd.Series([2,1,3]).to_frame(name="values")
df['origin'].fillna(value=df2["values"], inplace=True)