I have implemented a Transformer encoder in keras using the template provided by Francois Chollet here. After I train the model I save it using model.save
, but when I load it again for inference I find that the weights seem to be random again, and therefore my model loses all inference ability.
I have looked at similar issues on SO and Github, and applied the following suggestions, but still getting the same issue:
- Use the
@tf.keras.utils.register_keras_serializable()
decorator on the class. - Make sure
**kwargs
is in the init call - Make sure the custom layer has
get_config
andfrom_config
methods. - Use
custom_object_scope
to load model.
Below is a minimally reproducible example to replicate the issue. How do I change it so that the model weights save correctly?
import numpy as np
from tensorflow import keras
import tensorflow as tf
from tensorflow.keras import layers
from keras.models import load_model
from keras.utils import custom_object_scope
@tf.keras.utils.register_keras_serializable()
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense_proj = keras.Sequential(
[
layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
def call(self, inputs, mask=None):
if mask is not None:
mask = mask[:, tf.newaxis, :]
attention_output = self.attention(
inputs, inputs, attention_mask=mask)
proj_input = self.layernorm_1(inputs attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input proj_output)
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"dense_dim": self.dense_dim,
})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
# Create simple model:
encoder = TransformerEncoder(embed_dim=2, dense_dim=2, num_heads=1)
inputs = keras.Input(shape=(2, 2), batch_size=None, name="test_inputs")
x = encoder(inputs)
x = layers.Flatten()(x)
outputs = layers.Dense(1, activation="linear")(x)
model = keras.Model(inputs, outputs)
# Fit the model and save it:
np.random.seed(42)
X = np.random.rand(10, 2, 2)
y = np.ones(10)
model.compile(optimizer=keras.optimizers.Adam(), loss="mean_squared_error")
model.fit(X, y, epochs=2, batch_size=1)
model.save("./test_model")
# Load the saved model:
with custom_object_scope({
'TransformerEncoder': TransformerEncoder
}):
loaded_model = load_model("./test_model")
print(model.weights[0].numpy())
print(loaded_model.weights[0].numpy())
CodePudding user response:
The weights are saved (you can load them with load_weights
after loading the model). The problem is that you create new layers in __init__
. You need to recreate them from their config, for example:
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, attention_config=None, dense_proj_config=None, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim) \
if attention_config is None else layers.MultiHeadAttention.from_config(attention_config)
self.dense_proj = keras.Sequential(
[
layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),
]
) if dense_proj_config is None else keras.Sequential.from_config(dense_proj_config)
...
def call(self, inputs, mask=None):
...
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"dense_dim": self.dense_dim,
"attention_config": self.attention.get_config(),
"dense_proj_config": self.dense_proj.get_config(),
})
return config
Output:
[[[-0.810745 -0.14727005]]
[[ 0.8542909 0.09689581]]]
[[[-0.810745 -0.14727005]]
[[ 0.8542909 0.09689581]]]
CodePudding user response:
the secrete is how it works you can try it with the model.get_weights() but I sample in the layer.get_weight() that is because easiliy see.
Sample: Custom layer with random initial values, result in small of randoms number changed when run it couple of time.
import tensorflow as tf
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
""" initialize weights with randomize numbers """
min_size_init = tf.keras.initializers.RandomUniform(minval=1, maxval=5, seed=None)
self.kernel = self.add_weight(shape=[int(input_shape[-1]), self.num_outputs],
initializer = min_size_init, trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.kernel)
start = 3
limit = 33
delta = 3
# Create DATA
sample = tf.range(start, limit, delta)
sample = tf.cast( sample, dtype=tf.float32 )
# Initail, ( 10, 1 )
sample = tf.constant( sample, shape=( 10, 1 ) )
layer = MyDenseLayer(10)
data = layer(sample)
Output: The same layer initialized continues of the call() process
### 1st round ###
# [array([[-0.07862139, -0.45416605, -0.53606 , 0.18597281, 0.2919714 ,
# -0.27334914, 0.60890776, -0.3856985 , 0.58052486, -0.5634572 ]], dtype=float32)]
### 2nd round ###
# [array([[ 0.5949032 , 0.05113244, -0.51997787, 0.26252705, -0.09235346,
# -0.35243294, -0.0187515 , -0.12527376, 0.22348166, 0.37051445]], dtype=float32)]
### 3rd round ###
# [array([[-0.6654639 , -0.46027896, -0.48666477, -0.23095328, 0.30391783,
# 0.21867174, -0.5405392 , -0.45399982, -0.22143698, 0.66893476]], dtype=float32)]
Sample: Re-called every time tell the layer to reset the initial value.
layer.build([1])
print( data )
print( layer.get_weights() )
Output: The model.call() result in differnt not continues.
### 1st round ###
# [array([[ 0.73738164, 0.14095825, -0.5416008 , -0.35084447, -0.35209572,
# -0.35504425, 0.1692887 , 0.2611189 , 0.43355125, -0.3325353 ]], dtype=float32)]
### 2nd round ###
# [array([[ 0.5949032 , 0.05113244, -0.51997787, 0.26252705, -0.09235346,
# -0.35243294, -0.0187515 , -0.12527376, 0.22348166, 0.37051445]], dtype=float32)]
### 3rd round ###
# [array([[-0.6654639 , -0.46027896, -0.48666477, -0.23095328, 0.30391783,
# 0.21867174, -0.5405392 , -0.45399982, -0.22143698, 0.66893476]], dtype=float32)]
Sample: We included layer-initialized values requirements, suppose to start at the same initial for all actions.
""" initialize weights with values ones """
min_size_init = tf.keras.initializers.Ones()
Output: The same results are re-produced every time.
### 1st round ###
# tf.Tensor(
# [[ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
# [ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
# [ 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]
# [12. 12. 12. 12. 12. 12. 12. 12. 12. 12.]
# [15. 15. 15. 15. 15. 15. 15. 15. 15. 15.]
# [18. 18. 18. 18. 18. 18. 18. 18. 18. 18.]
# [21. 21. 21. 21. 21. 21. 21. 21. 21. 21.]
# [24. 24. 24. 24. 24. 24. 24. 24. 24. 24.]
# [27. 27. 27. 27. 27. 27. 27. 27. 27. 27.]
# [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]], shape=(10, 10), dtype=float32)
# [array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]], dtype=float32)]
### 2nd round ###
# tf.Tensor(
# [[ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]
# [ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.]
# [ 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]
# [12. 12. 12. 12. 12. 12. 12. 12. 12. 12.]
# [15. 15. 15. 15. 15. 15. 15. 15. 15. 15.]
# [18. 18. 18. 18. 18. 18. 18. 18. 18. 18.]
# [21. 21. 21. 21. 21. 21. 21. 21. 21. 21.]
# [24. 24. 24. 24. 24. 24. 24. 24. 24. 24.]
# [27. 27. 27. 27. 27. 27. 27. 27. 27. 27.]
# [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]], shape=(10, 10), dtype=float32)
# [array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]], dtype=float32)]