I have the following algorithm that iterates over a DataFrame with few millions of rows. It takes a lot of time for the algorithm to finish. Do you have any suggestions?
def k_nn_averaging(df: pd.DataFrame, k: int = 15, use_abs_value: bool = False) -> pd.DataFrame:
df_averaged = df.copy()
df[helper.modifiable_columns] = df[helper.modifiable_columns].astype(float)
df_averaged[helper.modifiable_columns] = df_averaged[helper.modifiable_columns].astype(float)
for i in range(0, df.shape[0]):
neighbours = list(range(i-k if i-k >= 0 else 0, i k if i k <= df_averaged.shape[0] else df_averaged.shape[0]))
neighbours.remove(i)
selectedNeighbourIndex = choice(neighbours)
factor = uniform(0,1)
currentSampleValues = df[helper.modifiable_columns].iloc[i]
neighbourSampleValues = df[helper.modifiable_columns].iloc[selectedNeighbourIndex]
average = 0
if not use_abs_value: average = factor*(currentSampleValues - neighbourSampleValues)
else: average = factor*(abs(currentSampleValues - neighbourSampleValues))
df_averaged.loc[i,helper.modifiable_columns] = currentSampleValues average
return df_averaged
CodePudding user response:
The first thing you should always want is to vectorize loops. Here is the modified code that avoids using Python loops and uses NumPy operations instead:
import pandas as pd
import numpy as np
def k_nn_averaging(df: pd.DataFrame, k: int = 15, use_abs_value: bool = False) -> pd.DataFrame:
df_averaged = df.copy()
df_averaged[helper.modifiable_columns] = df_averaged[helper.modifiable_columns].astype(float)
num_rows = df.shape[0]
modifiable_columns = helper.modifiable_columns
# create a matrix of the neighbour indices for each row
neighbour_indices = np.empty((num_rows, k*2 1), dtype=int)
neighbour_indices[:, k] = np.arange(num_rows) # set the current row index as the middle value
for i in range(k):
# set the left neighbours
neighbour_indices[i 1:, i] = neighbour_indices[i:-1, k] - 1
# set the right neighbours
neighbour_indices[:-i-1, k i 1] = neighbour_indices[1:, k] 1
# set the values outside the range of the DataFrame to -1
neighbour_indices[neighbour_indices < 0] = -1
neighbour_indices[neighbour_indices >= num_rows] = -1
# select the neighbour indices to use for each row
selected_neighbour_indices = neighbour_indices[:, neighbour_indices[0] >= 0]
# create a matrix of factors
factors = np.random.uniform(size=(num_rows, selected_neighbour_indices.shape[1]))
# select the neighbour values for each row
neighbour_values = df[modifiable_columns].values[selected_neighbour_indices]
# select the current values for each row
current_values = df[modifiable_columns].values[:, np.newaxis]
# calculate the average values
if not use_abs_value:
averages = factors * (current_values - neighbour_values)
else:
averages = factors * np.abs(current_values - neighbour_values)
# update the values in the output DataFrame
df_averaged[modifiable_columns] = current_values averages
return df_averaged
I think this will be much faster than the original script.