i want to concatenate/join many columns include Nan value to one new column.
how to avoid/pass the NaN in join result?
below just to show my try i used both .agg
and .apply
.
import pandas as pd
import numpy as np
df = pd.DataFrame({'foo':['a',np.nan,'c'], 'bar':[1, 2, 3], 'new':['apple', 'banana', 'pear']})
subcat_names=["foo","new"]
df["result"] = df[subcat_names].astype(str).agg(','.join, axis=1)
df=df.fillna("")
df["result_2"] =df[subcat_names].apply(lambda x : '{},{}'.format(x[0],x[1]), axis=1)
print(df)
foo bar new result result_2
0 a 1 apple a,apple a,apple
1 2 banana nan,banana ,banana
2 c 3 pear c,pear c,pear
at result the nan,
is unwanted
at result_2 ,
is unwanted
thanks
CodePudding user response:
I think that the second option is almost correct, you just have to implement your lambda in a bit more involved way. The following is pseudocode and it's not tested:
def process(row):
filtered = list()
for item in row:
if np.isnan(item).any():
continue
filtered.append(item)
return ",".join(filtered)
df["result_2"] =df[subcat_names].apply(process, axis=1)
Most likely you could rely on not_na pandas function to collect valid values out of current row
CodePudding user response:
You can try pd.notnull()
subcat_names = ["foo", "new"]
df["result"] = df[subcat_names].apply(lambda x: ",".join(x[pd.notnull(x)]), axis=1)
print(df)
Output:
foo bar new result
0 a 1 apple a,apple
1 2 banana banana
2 c 3 pear c,pear