The data I have is almost similar to the data below.
A=01-03
B=04-06
C=07-09
D=10-11
data<-read.table (text=" ID Class Time1 Time2 Time3
1 1 1 3 3
2 1 4 3 2
3 1 2 2 2
1 2 1 4 1
2 3 2 1 1
3 2 3 2 3
1 3 1 1 2
2 2 4 3 1
3 3 3 2 1
1 1 4 3 2
2 1 2 2 2
3 2 1 4 1
", header=TRUE)
I want to create 2 columns right after the Class column, i.e. the Bin and Zero columns based on A, B, C and D and IDs. Therefore A goes to IDs 1,2, and 3. B goes to the next IDs, i.e., 1,2 and 3, and C goes to the next IDs, i.e., 1,2,3 and so on. Column Zero gets only numbers zeros. So the outcome would be:
ID Class Bin Zero Time1 Time2 Time3
1 1 01-03 0 1 3 3
2 1 01-03 0 4 3 2
3 1 01-03 0 2 2 2
1 2 04-06 0 1 4 1
2 3 04-06 0 2 1 1
3 2 04-06 0 3 2 3
1 3 07-09 0 1 1 2
2 2 07-09 0 4 3 1
3 3 07-09 0 3 2 1
1 1 10-11 0 4 3 2
2 1 10-11 0 2 2 2
3 2 10-11 0 1 4 1
CodePudding user response:
Please try the below code
library(tidyverse)
#use character vector with quotes
A='01-03'
B='04-06'
C='07-09'
D='10-11'
data<-read.table (text=" ID Class Time1 Time2 Time3
1 1 1 3 3
2 1 4 3 2
3 1 2 2 2
1 2 1 4 1
2 3 2 1 1
3 2 3 2 3
1 3 1 1 2
2 2 4 3 1
3 3 3 2 1
1 1 4 3 2
2 1 2 2 2
3 2 1 4 1
", header=TRUE)
#create a separate dataframe with bin column
data2 <- data.frame(bin=c(rep(A,3),rep(B,3),rep(C,3),rep(D,3)))
data3 <- bind_cols(data, data2) %>% mutate(zero=0)
CodePudding user response:
If you are open to a dplyr
based solution, you could use
library(dplyr)
data %>%
group_by(ID) %>%
mutate(Bin = c(A, B, C, D),
Zero = 0,
.after = 2) %>%
ungroup()
This returns
# A tibble: 12 × 7
ID Class Bin Zero Time1 Time2 Time3
<int> <int> <chr> <dbl> <int> <int> <int>
1 1 1 01-03 0 1 3 3
2 2 1 01-03 0 4 3 2
3 3 1 01-03 0 2 2 2
4 1 2 04-06 0 1 4 1
5 2 3 04-06 0 2 1 1
6 3 2 04-06 0 3 2 3
7 1 3 07-09 0 1 1 2
8 2 2 07-09 0 4 3 1
9 3 3 07-09 0 3 2 1
10 1 1 10-11 0 4 3 2
11 2 1 10-11 0 2 2 2
12 3 2 10-11 0 1 4 1