Home > database >  How to insert a row into a multiindex dataframe so that rows sum to the total?
How to insert a row into a multiindex dataframe so that rows sum to the total?

Time:02-06

I have a multi index dataframe that I want to insert a row into.

>>>import numpy as np
>>>import pandas as pd
>>> date = pd.date_range('2023-01-01', periods=3)
>>> size = ['s','m','total']
>>> arrays = [date, size]
>>> index = pd.MultiIndex.from_product(arrays, names=['date','size'])
>>> volume = [4,15,47,8,12,46,4,14,48]
>>> hours = [2,1,13,4,4,10,1,2,10]
>>> df = pd.DataFrame({'volume':volume, 'hours':hours}, index=index)
>>> df
                  volume  hours
date       size
2023-01-01 s           4      2
           m          15      1
           total      47     13
2023-01-02 s           8      4
           m          12      4
           total      46     10
2023-01-03 s           4      1
           m          14      2
           total      48     10

How can I insert a row that is labeled as 'l' for each date and is the difference between the 'total' row and the sum of the 's' and 'm' rows? The desired output is as follows:

                  volume  hours
date       size
2023-01-01 s           4      2
           m          15      1
           l          28     10
           total      47     13
2023-01-02 s           8      4
           m          12      4
           l          26      2
           total      46     10
2023-01-03 s           4      1
           m          14      2
           l          30      7
           total      48     10
 

CodePudding user response:

You can try this:

(df.reset_index()
 .pivot(index='date', columns='size')
 .stack(level=0)
 .assign(l = lambda x: x['total'] - (x['m']   x['s']))
 .stack()
 .reset_index()
 .pivot(index=['date', 'size'], columns='level_1')[0]
)

level_1           hours  volume
date       size                
2023-01-01 l         10      28
           m          1      15
           s          2       4
           total     13      47
2023-01-02 l          2      26
           m          4      12
           s          4       8
           total     10      46
2023-01-03 l          7      30
           m          2      14
           s          1       4
           total     10      48
  • Related