I have a data like this:
d1 = pd.DataFrame({"Mother_id": 11111, "Children_id": [12476, 19684]})
d2 = pd.DataFrame({"Mother_id": 22222, "Children_id": [24153, 29654, 25417]})
d3 = pd.concat([d1, d2], axis=0)
Desired Output:
Mother_id child_id_1 child_2 child_3 .... number_of_children
(11111, 12476, 19684, nan, 2)
(22222, 24153, 29654, 25417, 3)
Can anyone help ? thanks.
CodePudding user response:
Here is a solution using pivot
. It first uses groupby
cumcount
to compute a helper column with the children's rank that will be used to define the columns for the pivot.
(d3.assign(n=d3.groupby('Mother_id').cumcount().add(1))
.pivot(index='Mother_id', columns='n', values='Children_id')
.add_prefix('child_')
.assign(n_children=lambda d: d.notna().sum(axis=1))
)
output:
child_1 child_2 child_3 n_children
Mother_id
11111 12476.0 19684.0 NaN 2
22222 24153.0 29654.0 25417.0 3
CodePudding user response:
You are not only need concat
, you will need groupby
with row explode
s = pd.concat([d1,d2]).groupby('Mother_id').Children_id.agg(list).apply(pd.Series).add_prefix('child_id_')
s['number_of_child'] = s.notna().sum(1)
s = s.reset_index()
s
Out[95]:
Mother_id child_id_0 child_id_1 child_id_2 number_of_child
0 11111 12476.0 19684.0 NaN 2
1 22222 24153.0 29654.0 25417.0 3