I have a huge problem. I want to have the best fitting curve through these points very well. In gnuplot I try this.
f(x) = a*x**6 b*x**5 c*x**4 d*x**3 e*x**2 f*x g
fit f(x) 'dihedral_energy_sorted.txt' via a, b, c, d, e, f, g
plot 'dihedral_energy_sorted.txt' with points pointtype 7 pointsize 2 linecolor "red", 'dihedral_energy_sorted.txt' with lines lw 2 linecolor "red", f(x) with lines lw 2 linecolor "blue"
But my results are not so good.
I need something much better, which gives me a line graph that goes through the points and is much more smooth not just points connected by lines.
Maybe in excel or matplotlib I have something which could help me
I need fit something like that
This is data from the first file
-172.266 5.93362
-161.743 7.90223
-151.444 9.39198
-139.667 9.07427
-128.472 7.94997
-118.986 6.82431
-109.593 5.48811
-99.149 4.25969
-89.297 3.26822
-78.018 2.26675
-69.572 1.43405
-59.157 0.814157
-50.830 0.57777
-40.542 0.859919
-30.995 1.28429
-21.507 1.70913
-11.557 2.41328
-0.911 3.12653
9.526 3.97824
19.606 4.61242
29.856 5.27657
40.725 5.0631
51.336 3.71232
61.068 2.25515
70.685 1.25386
80.499 0.655369
90.433 0.332484
100.257 0.167369
110.170 0.156063
120.393 0
129.920 0.100962
140.245 0.258918
149.617 0.698804
158.873 1.52595
168.424 2.53915
178.232 4.08872
This is data from the second file
-172.266 106.470
-161.743 106.362
-151.444 105.361
-139.667 105.809
-128.472 108.023
-118.986 111.368
-109.593 115.765
-99.149 119.263
-89.297 121.257
-78.018 120.227
-69.572 118.617
-59.157 116.109
-50.830 115.423
-40.542 114.353
-30.995 113.756
-21.507 113.016
-11.557 112.750
-0.911 111.413
9.526 110.081
19.606 109.232
29.856 108.139
40.725 110.666
51.336 111.101
61.068 111.435
70.685 110.908
80.499 110.659
90.433 110.070
100.257 109.833
110.170 109.453
120.393 109.125
129.920 108.426
140.245 108.150
149.617 107.904
158.873 107.596
168.424 107.216
178.232 106.899
CodePudding user response:
According to the SO-"rule", no answers in comments: Here is an answer. Check help smooth
and one of the splines
options.
With this large number of points the different splines
options do not differ that much.
Code:
### smooth slpines
reset session
$Data <<EOD
-172.266 106.470
-161.743 106.362
-151.444 105.361
-139.667 105.809
-128.472 108.023
-118.986 111.368
-109.593 115.765
-99.149 119.263
-89.297 121.257
-78.018 120.227
-69.572 118.617
-59.157 116.109
-50.830 115.423
-40.542 114.353
-30.995 113.756
-21.507 113.016
-11.557 112.750
-0.911 111.413
9.526 110.081
19.606 109.232
29.856 108.139
40.725 110.666
51.336 111.101
61.068 111.435
70.685 110.908
80.499 110.659
90.433 110.070
100.257 109.833
110.170 109.453
120.393 109.125
129.920 108.426
140.245 108.150
149.617 107.904
158.873 107.596
168.424 107.216
178.232 106.899
EOD
plot $Data u 1:2 w p pt 7 ti "Data", \
'' u 1:2 smooth csplines lc "red" ti "csplines", \
'' u 1:2 smooth acsplines lc "green" ti "acsplines", \
'' u 1:2 smooth mcsplines lc "blue" ti "mcsplines"
### end of code
Result: