I would like to use a loop to create crosstabs of one column with every other column in a df. I started with this code (substituting in the iris df), which works nicely for two variables:
iris <- iris
tbl <- iris %>%
tabyl(Species, Sepal.Length, show_missing_levels = FALSE, show_na = FALSE) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 0) %>%
adorn_ns() %>%
adorn_title("combined") %>%
knitr::kable()
print(tbl)
My df contains ~200 columns. I thought I would write a for loop to print a crosstab for one variable with each of the other variables. Here's what I tried:
cols <- c('Sepal.Length', 'Sepal.Width')
for (c in cols){
tbl <- iris %>%
tabyl(Species, c, show_missing_levels = FALSE, show_na = FALSE) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 0) %>%
adorn_ns() %>%
adorn_title("combined") %>%
knitr::kable()
print(tbl)
}
This returns Column `c` is not found.
This seems like it should be simple, but I can't figure it out. Thanks for any help.
CodePudding user response:
Change the c
in your code to !!sym(c)
. I can't explain this non-standard tidyverse evaluation thingy, but in layman's terms, you want to access an object (i.e. "c") outside of your pipe (iris). That's why you need !!sym.
CodePudding user response:
You can use the .data
pronoun when passing columns names as strings.
cols <- c('Sepal.Length', 'Sepal.Width')
for (col in cols){
tbl <- iris %>%
tabyl(Species, .data[[col]],show_missing_levels = FALSE,show_na = FALSE) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 0) %>%
adorn_ns() %>%
adorn_title("combined") %>%
knitr::kable()
print(tbl)
}