I am trying to split a column up into two columns based on a delimeter. The column presently has text that is separated by a '-'. Some of the values in the column are NaN, so when I run the code below, I get the following error message: ValueError: Columns must be same length as key.
I don't want to delete the NaN values, but am not sure how to skip them so that this splitting works.
The code I have right now is:
df[['A','B']] = df['A'].str.split('-',expand=True)
CodePudding user response:
Maybe filter them out with loc:
df.loc[df['A'].notna(), ['A','B']] = df.loc[df['A'].notna(), 'A'].str.split('-',expand=True)
CodePudding user response:
Your code works well with NaN values but you have to use n=1
as parameter of str.split
:
Suppose this dataframe:
df = pd.DataFrame({'A': ['hello-world', np.nan, 'raise-an-exception']}
print(df)
# Output:
A
0 hello-world
1 NaN
2 raise-an-exception
Reproducible error:
df[['A', 'B']] = df['A'].str.split('-', expand=True)
print(df)
# Output:
...
ValueError: Columns must be same length as key
Use n=1
:
df[['A', 'B']] = df['A'].str.split('-', n=1, expand=True)
print(df)
# Output:
A B
0 hello world
1 NaN NaN
2 raise an-exception
An alternative is to generate more columns:
df1 = df['A'].str.split('-', expand=True)
df1.columns = df1.columns.map(lambda x: chr(x 65))
print(df1)
# Output:
A B C
0 hello world None
1 NaN NaN NaN
2 raise an exception