I have some time series data in a pandas data frame like this:
begin | end | mw_values |
---|---|---|
2021-09-14 11:16:00 | 2021-09-14 11:27:11 | 0 |
2021-09-14 11:27:11 | 2021-09-14 11:30:00 | 100 |
2021-09-14 11:30:00 | 2021-09-14 11:33:59 | 1200 |
2021-09-14 11:33:59 | 2021-09-14 11:39:42 | 600 |
2021-09-14 11:39:42 | 2021-09-14 11:59:59 | 400 |
I need the sum of the mw_values distributed into 15 minutes time slots like this:
time_slots_15_min | sum_mw_values |
---|---|
2021-09-14 11:00 | 0 |
2021-09-14 11:15 | 100 |
2021-09-14 11:30 | 2200 |
2021-09-14 11:45 | 0 |
2021-09-14 12:00 | 0 |
Does someone have any idea how I can achieve this?
Note that the intervals between begin and end may overlap 2 time slots. Then the value must be involved in the sum of the time slot where it begins; e.g. the mw_value of 400 in the example from above.
CodePudding user response:
You can reindex your DataFrame by the begin
column, insert two new rows to ensure that the beginning time starts at 11:00
and that the end time is 12:00
), then and then use .resample("15min").sum()
which will work for a DatetimeIndex
(the documentation can be found here if you want to read further):
## in case your column isn't already a datetime
df["begin"] = pd.to_datetime(df["begin"])
df = df.set_index("begin")
## add beginning and ending times to df
df_start_end = pd.DataFrame({"end": ["2021-09-14 11:15:00","2021-09-14 12:15:00"], "mw_values":[0]}, index=[pd.to_datetime("2021-09-14 11:00:00"),pd.to_datetime("2021-09-14 12:00:00")])
df_final = pd.concat([df_start_end,df]).sort_index()
This is what df_final
looks like:
end mw_values
2021-09-14 11:00:00 2021-09-14 11:15:00 0
2021-09-14 11:16:00 2021-09-14 11:27:11 0
2021-09-14 11:27:11 2021-09-14 11:30:00 100
2021-09-14 11:30:00 2021-09-14 11:33:59 1200
2021-09-14 11:33:59 2021-09-14 11:39:42 600
2021-09-14 11:39:42 2021-09-14 11:59:59 400
2021-09-14 12:00:00 2021-09-14 12:15:00 0
Then we resample and sum every 15 minutes over the DatetimeIndex
:
## sum by every 15 minutes from the start to end time
df_final.resample("15min").sum().reset_index().rename(columns={"index":"time_slots_15_min","mw_values":"sum_mw_values"})
Output:
time_slots_15_min sum_mw_values
0 2021-09-14 11:00:00 0
1 2021-09-14 11:15:00 100
2 2021-09-14 11:30:00 2200
3 2021-09-14 11:45:00 0
4 2021-09-14 12:00:00 0
CodePudding user response:
You can resample your dataframe so sum the data in 15 minute bins. Then you can reindex that frame so it matches your desired start/end/frequency times.
freq = "15min"
new_index = pd.date_range(
"2021-09-14 11:00:00", "2021-09-14 12:00:00", freq=freq
)
out = (
df.resample(freq, on="begin")["mw_values"]
.sum()
.reindex(new_index, fill_value=0)
.to_frame("sum_mw_values")
)
print(out)
sum_mw_values
2021-09-14 11:00:00 0
2021-09-14 11:15:00 100
2021-09-14 11:30:00 2200
2021-09-14 11:45:00 0
2021-09-14 12:00:00 0