I would like to use Huggingface Transformers to implement a chatbot. Currently, I have the code shown below. The transformer model already takes into account the history of past user input.
Is there something else (additional code) I have to take into account for building the chatbot?
Second, how can I modify my code to run with TensorFlow instead of PyTorch?
Later on, I also plan to fine-tune the model on other data. I also plan to test different models such as BlenderBot and GPT2. I think to test this different models it should be as easy as replacing the corresponding model in AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
and AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
for step in range(5):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# pretty print last ouput tokens from bot
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
CodePudding user response:
Here is an example of using the DialoGPT
model with Tensorflow:
from transformers import TFAutoModelForCausalLM, AutoTokenizer, BlenderbotTokenizer, TFBlenderbotForConditionalGeneration
import tensorflow as tf
chat_bots = {
'BlenderBot': [BlenderbotTokenizer.from_pretrained('facebook/blenderbot-400M-distill'), TFT5ForConditionalGeneration.from_pretrained('facebook/blenderbot-400M-distill')],
'DialoGPT': [AutoTokenizer.from_pretrained("microsoft/DialoGPT-small"), TFAutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")],
}
key = 'DialoGPT'
tokenizer, model = chat_bots[key]
for step in range(5):
new_user_input_ids = tokenizer.encode(input(">> User:") tokenizer.eos_token, return_tensors='tf')
if step > 0:
bot_input_ids = tf.concat([chat_history_ids, new_user_input_ids], axis=-1)
else:
bot_input_ids = new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
print(key ": {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
>> User:How are you?
DialoGPT: I'm here
>> User:Why are you here
DialoGPT: I'm here
>> User:But why
DialoGPT: I'm here
>> User:Where is here
DialoGPT: Where is where?
>> User:Here
DialoGPT: Where is here?
If you want to compare different chatbots, you might want to adapt their decoder parameters, because they are not always identical. For example, using BlenderBot
and a max_length
of 50 you get this kind of response with the current code:
>> User:How are you?
BlenderBot: ! I am am great! how how how are are are???
In general, you should ask yourself which special characters are important for a chatbot (depending on your domain) and which characters should / can be omitted?
You should also experiment with different decoding methods such as greedy search, beam search, random sampling, top-k sampling, and nucleus sampling and find out what works best for your use case. For more information on this topic check out this post