The following code gives me models a <- c
and b <- d
, but I was wondering how I could modify it to also have a <- d
and b <- c
outcomes <- df %>%
select(a, b)
predictors <- df %>%
select(c, d)
model <- function(outcomes, predictors) lm(outcomes ~ predictors)
map2(outcomes, predictors, model)```
CodePudding user response:
Suppose that which variables will be independent or dependent variables are fixed. In this case, a
and b
will be dependent variable and c
and d
will be independent variable.
You may try
df <- data.frame(
a = 1:4,
b = 2:5,
c = rnorm(4),
d = runif(4)
)
dep <- c("a", "b")
indep <- c("c", "d")
indep <- gtools::permutations(n = 2, r = 2, v = indep)
df %>%
select(dep)
df %>%
select(indep[1,])
modlist <- list()
for (i in 1:nrow(indep)){
outcomes <- df %>%
select(dep)
predictors_ <- df %>%
select(indep[i,])
fit <- function(outcomes, predictors_) lm(outcomes ~ predictors_)
modlist[[i]] <- map2(outcomes, predictors_, fit)
}
modlist
[[1]]
[[1]]$a
Call:
lm(formula = outcomes ~ predictors_)
Coefficients:
(Intercept) predictors_
2.4296 -0.2222
[[1]]$b
Call:
lm(formula = outcomes ~ predictors_)
Coefficients:
(Intercept) predictors_
2.058 2.631
[[2]]
[[2]]$a
Call:
lm(formula = outcomes ~ predictors_)
Coefficients:
(Intercept) predictors_
1.058 2.631
[[2]]$b
Call:
lm(formula = outcomes ~ predictors_)
Coefficients:
(Intercept) predictors_
3.4296 -0.2222
CodePudding user response:
You do not need a for-loop or even map for this. Just reshape your data and do an lm for the whole dataset. Check example below:
data <- head(iris[-5], 6)
indep <- c('Sepal.Length', 'Petal.Length')
dep <- c('Sepal.Width', 'Petal.Width')
Now to run all the models:
data %>%
pivot_longer(all_of(indep))%>%
lm(as.matrix(.[dep])~0 name/value, .)
Call:
lm(formula = as.matrix(.[dep]) ~ 0 name/value, data = .)
Coefficients:
Sepal.Width Petal.Width
namePetal.Length 1.1702 -0.5298
nameSepal.Length -1.6859 -0.8402
namePetal.Length:value 1.5263 0.5263
nameSepal.Length:value 1.0241 0.2169
The results are as follows:
The first two rows are the intercepts and the last 2 rows are the B1 coefficients. compare:
lm(Sepal.Width~Petal.Length, data)
Call:
lm(formula = Sepal.Width ~ Petal.Length, data = data)
Coefficients:
(Intercept) Petal.Length
1.170 1.526
lm(Sepal.Width~Sepal.Length, data)
Call:
lm(formula = Sepal.Width ~ Sepal.Length, data = data)
Coefficients:
(Intercept) Sepal.Length
-1.686 1.024
Now you can compare the same with Petal.Width