I am trying to get the mean of columns that contain a especific word in name except last column with contain the same word in name, example
df <- data.frame( ABC_1 = runif(3),
ABC_2 = runif(3),
ABC_3 = runif(3),
ABC_4 = runif(3) )
Here I get the value for the last column that contain word: ABC, in col: max
df2=df %>%
rowwise() %>%
mutate_at(vars(last(contains('ABC'))), funs(max= max(., na.rm = TRUE)))
ABC_1 ABC_2 ABC_3 ABC_4 max
<dbl> <dbl> <dbl> <dbl> <dbl>
1 0.191 0.486 0.455 0.246 0.246
2 0.523 0.728 0.812 0.517 0.517
3 0.134 0.937 0.992 0.899 0.899
With the same logic, now I tried to get the mean of all column with name ABC, except last column:
df3=df %>%
rowwise() %>%
mutate_at(vars(last(contains('ABC'))), funs(max= max(., na.rm = TRUE))) %>%
mutate_at(vars(-last(contains('ABC'))), funs(mean= mean(., na.rm = TRUE)))
But lamentably I dont get the result expected:
ABC_1 ABC_2 ABC_3 ABC_4 max ABC_1_mean ABC_2_mean ABC_3_mean max_mean
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.191 0.486 0.455 0.246 0.246 0.191 0.486 0.455 0.246
2 0.523 0.728 0.812 0.517 0.517 0.523 0.728 0.812 0.517
3 0.134 0.937 0.992 0.899 0.899 0.134 0.937 0.992 0.899
CodePudding user response:
One option could be:
df %>%
mutate(ABC_mean = rowMeans(across(head(starts_with("ABC"), -1))))
ABC_1 ABC_2 ABC_3 ABC_4 ABC_mean
1 0.5957359 0.7201537 0.1304605 0.1697986 0.4821167
2 0.6865635 0.9463447 0.8447037 0.4149000 0.8258706
3 0.2364415 0.8335135 0.6342009 0.4410836 0.5680520